
I - Standard graph-based methods
II - Flow based methods

III - Power watershed, a unifying framework
IV - Conclusion

Graph-based variational optimization
and applications in computer vision

Camille Couprie, joint work with

Laurent Najman*, Hugues Talbot* and Leo Grady+.

*LIGM, Université Paris Est, ESIEE, France

+Siemens Corporate Research, Princeton, USA

20 October 2011

Camille Couprie Graph-based variational optimization 1 / 60



I - Standard graph-based methods
II - Flow based methods

III - Power watershed, a unifying framework
IV - Conclusion

Introduction

Image Segmentation Image restoration
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Regularity hypothesis

Classical formulation for solving our problems :

data f

! min
x

∫
Ω
jR(x)(z)j dz︸ ︷︷ ︸
Regularization

+ D(x ; f )︸ ︷︷ ︸
Data �delity

!

solution x

Example : minimization of the total variation

The solution x may be a labeling :

partitionning an image in di�erent regions

estimating a depth map for stereo-vision reconstruction

restored intensities of an image f [ROF model, 1992]
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Genericity of graph-based methods

Seeded segmentation

!

?

Classi�cation

!

?

Image restoration

!

?

Mesh denoising

!

?
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1) Watershed method
2) Classical Max Flow / Graph cut method
3) Random Walker method

Some graph-based segmentation tools

Watershed [Beucher-Lantuéjoul 1979, Vincent-Soille 1991]

Advantages

Fast

Multilabel

Robust to markers size

Drawbacks

Leaking e�ect

Non unique solution (di�cult

to get a non algorithmically

dependent result)
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1) Watershed method
2) Classical Max Flow / Graph cut method
3) Random Walker method

Watershed and Maximum Spanning Forest equivalence

MSF : set of trees

spanning all nodes

not connecting di�erent seeds

such that the total sum of their

weights is maximum.

If seeds are the maxima of the weight

function, every MSF cut on the weight

function is a watershed cut

[Cousty et al 07, the drop of water

principle]
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1) Watershed method
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Max Spanning Forest (Watershed)
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1) Watershed method
2) Classical Max Flow / Graph cut method
3) Random Walker method

Some graph-based segmentation tools : Graph Cuts

Graph cuts / Max �ow

Advantages

Energy formulation ! extends

to a large class of problems

Robust to markers placement

Drawbacks

Bias toward small contours

Block artifacts

Super-linear complexity

Limited to binary (2 labels)

segmentation

[Ford & Fulkerson 60s,

Boykov-Joly 1998]
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Some graph-based segmentation tools : Random Walker

Combinatorial Dirichlet problem. Seeded segmentation

[Grady 2006]

Resolution of system of linear equations.

Advantages

Energy formulation ! extends

to a large class of problems

No blocking artefacts

Drawbacks

Requires a more centered

markers placement

Super-linear complexity
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1) Watershed method
2) Classical Max Flow / Graph cut method
3) Random Walker method

Some graph-based segmentation tools : Random Walker

Random Walker

segmentation
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1) Flow constrained image segmentation
2) Flow constrained image restoration

Minimal surfaces
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1) Flow constrained image segmentation
2) Flow constrained image restoration

Motivation

In the continuum : Minimal cut

(surface in 3D) is dual of

continuous maximum �ow [Strang

1983]

In the classic discrete case min-cut

(= �Graph cuts�)/ max �ow duality

but grid bias in the solution

Recent trend : employ a spatially

continuous maximum �ow to

produce solutions with no grid bias

Max Flow (Graph Cuts)

Continuous Max Flow

[Appleton-Talbot 2006]
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1) Flow constrained image segmentation
2) Flow constrained image restoration

Motivation

[Appleton-Talbot 2006, generalized by Unger-Pock-Bishof

2008] Fastest known continuous max-�ow algorithm has no

stopping criteria and no converge proof.

Our contribution : Combinatorial Continuous Maximum

Flow

a new discrete isotropic formulation

avoids blockiness artifacts

is proved to converge, is fast

generalizes to arbitrary graphs

[In SIAM Journal on Imaging Sciences, 2011]
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1) Flow constrained image segmentation
2) Flow constrained image restoration

Combinatorial Continuous Maximum Flow (CCMF)

Incidence matrix of a graph noted A

Continuous

MaxFlow

max
�!
F

�!
F st

s.t. r �
�!
F = 0;

jj
�!
F jj � g:

Combinatorial

formulation

max
F

Fst

s.t. ATF = 0;

jAT jF 2 � g2

g de�ned on nodes

MaxFlow,

GraphCuts

max
F

Fst

s.t. ATF = 0;

jF j � g

g de�ned on edges

CCMF : convex problem

Resolution by an interior point method.
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1) Flow constrained image segmentation
2) Flow constrained image restoration

Discrete formulation on graphs - notations

Graph of N vertices, M edges

Incidence matrix A 2 RM�N

A =

p1 p2 p3 p4
e1 �1 1 0 0

e2 �1 0 1 0

e3 0 �1 1 0

e4 0 �1 0 1

e4 0 0 �1 1

A gradient operator

A> divergence operator

allows general formulation

of problems on arbitrary

graphs
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Graph Cuts vs CCMF

S

T

S

T

minimal cut on

saturated edges

minimal cut on

saturated vertices

Scale of weight intensity :
1 ... ∞
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CCMF dual problem

The dual of the CCMF problem is

min
��0;�

∑
vi2V

�ig
2

i︸︷︷︸
weighted cut

+
1

4

∑
eij2Enfs;tg

(�i � �j)
2

�i + �j︸ ︷︷ ︸
smoothness term

+
1

4

(�s � �t � 1)2

�s + �t︸ ︷︷ ︸
source-sink

enforcement

Image

with seeds

� � Threshold

of � at :5
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Minimal surfaces

Catenoid test problem :

source constituted by two full circles

sink by the remaining boundary of the image, constant

metric g

analytic minimal CCMF result

surface isosurface of �
Root Mean Square Error between the surfaces : 0.75

(Appleton-Talbot error : 1.98)
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Comparison with Graph cuts

Graph cuts result CCMF result

GC CCMF GC CCMF GC CCMF
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1) Flow constrained image segmentation
2) Flow constrained image restoration

Dual constrained TV based formulation

min
x

max
jA>jF 2�g2

F>(Ax)︸ ︷︷ ︸
regularization

+
1

2�
kHx � f k22︸ ︷︷ ︸

data �delity

f 2 RQ observed image

x 2 RN restored image

F 2 RM �ow, projection vector

H 2 RQ�N linear operator (e.g. degradation matrix)

Combinatorial variant of TV with �exible choice for C

C = \si=1
Ci decomposed in an intersection of convex sets

Joint work with Jean-Christophe Pesquet

[Couprie-Talbot-Pesquet-Najman-Grady, ICASSP 2011]
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1) Flow constrained image segmentation
2) Flow constrained image restoration

Dual problem

Fenchel-Rockafellar dual problem :

min
F2RM

s∑
i=1

fi (F ) + fs+1(F )

where �C : indicator function of convex C (=0 in C , +1 outside),

fs+1 : F 7! 1

2
F>AΓA>F � F>AΓH>f , and Γ = (H>H)�1.

The primal problem admits a unique solution x�.

If F � is a solution to the dual problem,

x� = Γ
(
H>f � A>F �

)
:

Proximity operator :

8y 2 RN ; proxf y = argminu2RN f (u) + 1
2ku � yk2:
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1) Flow constrained image segmentation
2) Flow constrained image restoration

Parallel ProXimal Algorithm (PPXA) optimizing DCTV

[Pesquet, Combettes, 2008], minimizeF
∑s

i=1
fi (F ) + fs+1(F )

 > 0; � 2]0; 2[:
Repeat until convergence

For (in parallel) i = 1; : : : ; s + 1⌊
�i =

{
prox fi(yi) if i � s

(AΓA> + I )�1(AΓH>f + ys+1) otherwise

z = 2
s+1(�1 + � � �+ �s+1)� F

For (in parallel) i = 1; : : : ; s + 1⌊
yi = yi + �(z � �i)

F = F + �
2 (z � F )

Simple projections onto hyperspheres

Linear system resolution
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IV - Conclusion

1) Flow constrained image segmentation
2) Flow constrained image restoration

Conclusion on the �ow-based methods

Discrete isotropic formulation of the max �ow problem that

avoids blockiness artifacts

Guaranteed convergence of the Interior Point method

Works on arbitrary graphs

Extension to multi-label problems in a new framework : "dual

constrained total variation"
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I - Introduction

II - Flow based methods

1 Segmentation : Combinatorial Continuous Maximum Flow
2 Restoration : Dual constrained TV-based regularization
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1 A new graph-based optimization framework
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II - Flow based methods

III - Power watershed, a unifying framework
IV - Conclusion

1) Image segmentation
2) Nonconvex Image �ltering
3) Stereo-vision
4) Surface reconstruction

What does all those algorithms have in common ?

Graph cuts Shortest paths

Random walker Watersheds
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1) Image segmentation
2) Nonconvex Image �ltering
3) Stereo-vision
4) Surface reconstruction

Previously established links

limq!1 argmin
x

∑
eij2E

wij
qjxi � xj j

q

︸ ︷︷ ︸
Smoothness term

+
∑
vi2V

wi
qjxi � li j

q

︸ ︷︷ ︸
Data term

l

x
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Theorems

When p !1,

the obtained cut is an

MSF cut.

when q > 1, the solution x̄

is unique.
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1) Image segmentation
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Power watershed algorithm

1 Choose an edge with maximal

weight emax. Let S the set of

edges connected to emax with

the same weight as emax.

2 If S does not contain vertices

that have di�erent labels,

merge the nodes of S into one

node, otherwise minimize E1;q

on S .

3 Repeat steps 1 and 2 until all

vertices are labeled.
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Algorithms comparison

Evaluation on GrabCut database

2 sets of seeds to study robustness to seeds centering
1 seeds well centered around boundaries :

Best performer : Shrt path, worst performer : GraphCuts
2 seeds less centered around boundaries : From best to worst :

GraphCuts, PWshed, Random Walker, MaxSF, Shrt path
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Optimal multilabels segmentation

l solutions x1; x2; :::x l computed

xk computed by enforcing

{
xk(lk) = 1

xk(lq) = 0 for all q 6= k :

Each node i is a�ected to the label for which xki is

maximum :

si = argmax
k

xki

Input seeds Segmentation by PowerWatershed (q = 2)

Camille Couprie Graph-based variational optimization 44 / 60



I - Standard graph-based methods
II - Flow based methods

III - Power watershed, a unifying framework
IV - Conclusion

1) Image segmentation
2) Nonconvex Image �ltering
3) Stereo-vision
4) Surface reconstruction

Video segmentation

Prim's algorithm of Max Spanning Forest (Watershed)
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Video segmentation

Power watersheds
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1) Image segmentation
2) Nonconvex Image �ltering
3) Stereo-vision
4) Surface reconstruction

Unseeded segmentation

x̄ = lim
p!1

argmin
x

∑
eij2E

w
p
ij jxi � xj j

q+
∑
vi

wFi

pjxi�1j
q+
∑
vi

wBi
pjxi j

q

wB

wF

F

B

Image Graph Cuts Watershed

This is the �rst time that it is shown how to incorporate data

unary terms into watershed computation.
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I - Standard graph-based methods
II - Flow based methods

III - Power watershed, a unifying framework
IV - Conclusion

1) Image segmentation
2) Nonconvex Image �ltering
3) Stereo-vision
4) Surface reconstruction

Non-convex di�usion using power watersheds

Anisotropic di�usion [Perona-Malik 1990]

Image 100 iterations 200 iterations

Goals of this work :

perform anisotropic di�usion using an `0 norm to avoid the

blurring e�ect

optimize a non convex energy using Power Watershed

[Couprie-Grady-Najman-Talbot, ICIP 2010]
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1) Image segmentation
2) Nonconvex Image �ltering
3) Stereo-vision
4) Surface reconstruction

Anisotropic di�usion and `0 norm

x� = argmin
x

∑
eij2E

�(xi � xj)︸ ︷︷ ︸
smoothness term

+ �
∑
vi2V

�(xi � fi)︸ ︷︷ ︸
data �delity term

x

σ(x) = 1− e−αx
2

α = 1
α = 10

α = 100

Leads to piecewise constant results
Original image PW result
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I - Standard graph-based methods
II - Flow based methods

III - Power watershed, a unifying framework
IV - Conclusion

1) Image segmentation
2) Nonconvex Image �ltering
3) Stereo-vision
4) Surface reconstruction

Stereovision using power watershed

Compute the disparity map from two aligned images

Labels correspond to the disparities, weights to similarity

coe�cients between blocks
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IV - Conclusion

1) Image segmentation
2) Nonconvex Image �ltering
3) Stereo-vision
4) Surface reconstruction

Surface reconstruction from a noisy set of dots

)

Goal : given a noisy set of dots, �nd an explicit surface

�tting the dots.

Joint work with Xavier Bresson
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I - Standard graph-based methods
II - Flow based methods

III - Power watershed, a unifying framework
IV - Conclusion

1) Image segmentation
2) Nonconvex Image �ltering
3) Stereo-vision
4) Surface reconstruction

How to solve this problem

Graph : 3D grid

Here x represents the object indicator to

recover.

x̄ = lim
p!1

argmin
x

∑
eij2E

wij
pjxi � xj j

q

s.t. x(F ) = 1; x(B) = 0

weights : distance function from the set

of dots to �t

Why PW are a good �t for this problem ?

numerous plateaus around the dots to �t !

smooth isosurface is obtained

Power

watershed

solution
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I - Standard graph-based methods
II - Flow based methods

III - Power watershed, a unifying framework
IV - Conclusion

1) Image segmentation
2) Nonconvex Image �ltering
3) Stereo-vision
4) Surface reconstruction

Comparisons

Total variation Graph cuts Power watershed

Size of required seeds Size of required seeds Size of required seeds

surface normals

estimation required
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I - Standard graph-based methods
II - Flow based methods

III - Power watershed, a unifying framework
IV - Conclusion

1) Image segmentation
2) Nonconvex Image �ltering
3) Stereo-vision
4) Surface reconstruction

Comparisons

Total variation Graph cuts Power watershed

Fast, accurate, globally optimal surface reconstruction from

noisy set of dots

Robust to markers placement

No normal estimation information required

No post-processing smoothing step
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I - Standard graph-based methods
II - Flow based methods

III - Power watershed, a unifying framework
IV - Conclusion

Outline

I - Introduction

II - Flow based methods

1 Segmentation : Combinatorial Continuous Maximum Flow
2 Restoration : Dual constrained TV-based regularization

III - Power watershed

1 A new graph-based optimization framework
2 Image segmentation
3 Image �ltering
4 Surface reconstruction

IV - Conclusion
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I - Standard graph-based methods
II - Flow based methods
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IV - Conclusion

Conclusion

Reformulation of classical max �ow method

Block artifacts of classical max �ow

Not present with CCMF

Convergence issues AT-CMF

Convergence guaranteed

Filtering using Graph cuts expensive

Extention of the CCMF

framework leads to a �exible �ltering framework on graphs

Power watersheds answers several problems of standard methods

Non unique solution

Unique solution

Leaking e�ect

Reduction of the leaks

Random Walker, Graph cuts : super-linear complexity

Quasi-linear

experimentally. Worst case : RW complexity.

More importantly : use of unary terms and multi labels opens the

way to large �eld of applications
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Conclusion

Continuous methods

Discrete calculus formulations

Optimization

Mathematical morphology
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I - Standard graph-based methods
II - Flow based methods

III - Power watershed, a unifying framework
IV - Conclusion

Next Challenge : Scene Parsing using New Global

Energy Models

Scene understanding of objects in video

Need for e�cient algorithm to process large amount of data

Hierarchical CRF [Ladický-Russell-Kohli-Torr 2009] have

shown good results.

Study the possibility of applying this optimization approach

for solving the problem using watersheds

Advantages : speed, global optimality
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I - Standard graph-based methods
II - Flow based methods
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IV - Conclusion

Questions

Source code for segmentation available from:

http ://sourceforge.net/projects/powerwatershed/
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Video segmentation : real life situation

Graph cut segmentation
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Video segmentation : real life situation

Prim's algorithm of Max Spanning Forest (Watershed)
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Video segmentation : real life situation

Segmentation using Powerwatershed
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Chapter 3 : Dual constrained TV based formulation

min
x2RN

sup
F2C

F>(Ax)︸ ︷︷ ︸
regularization

+
1

2�
kx � f k22︸ ︷︷ ︸

data �delity

C = \m�1i=1 Ci ; Ci = fF 2 RM j k�i � Fk� � gig, � � 1.

Example adapted to image denoising

gi 2 R
N weight on vertex i , inverselly function of

the gradient of f at node i .

Flat area : weak gradient ! strong gi ! strong Fi ;j
! weak local variations of x .

Contours : strong gradient ! weak gi ! weak Fi ;j
! large local variations of x allowed.

gj1

gi

gj3

gj4 gj2

Fj3,i

Fj4,i

Fj1,i

Fj2,i

Ci = fF 2 RM j

√∑
j2Ni

F 2
j ;i
� gig
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Dual problem

Fenchel-Rockafellar dual problem :

min
F2RM

s∑
i=1

fi (F ) + fs+1(F )

where �C : indicator function of convex C (=0 in C , +1 outside),

fs+1 : F 7! 1

2
F>AΓA>F � F>AΓH>f , and Γ = (H>H)�1.
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C = fF 2 RM j jA>jF 2 � g2g

g1 g2 g3

g4 g5 g6

F1 F2

F6 F7

F3 F4 F5

g1 g2 g3

g4 g5 g6

C1 = fF 2 RM j

(F 2
1 + F 2

2 + F 2
4 )

1

2 � g22

(F 2
3 + F 2

6 )
1

2 � g24

(F 2
5 + F 2

7 )
1

2 � g26g

C2 = fF 2 RM j

(F 2
1 + F 2

3 )
1

2 � g21

(F 2
2 + F 2

5 )
1

2 � g23

(F 2
4 + F 2

6 + F 2
7 )

1

2 � g25g
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Dual problem

Fenchel-Rockafellar dual problem :

min
F2RM

s∑
i=1

�Ci
(F ) + fs+1(F )

where �C : indicator function of convex C (=0 in C , +1 outside),

fs+1 : F 7! 1

2
F>AΓA>F � F>AΓH>f , and Γ = (H>H)�1.

The primal problem admits a unique solution x̂ .

If F̂ is a solution to the dual problem,

x̂ = Γ
(
H>f � A>F̂

)
:
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IV - Conclusion

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all di�erent, any cut thresholding the optimal

solution x minimizing Ep;q when q � 1 and p !1 is an MSF-cut.

F

B

5 7 9

81 2 3

6 4 10

Recall the energy function : Ep;q =
∑

eij2E
wp
ij jxi � xj j

q +D(x)
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