Graph-based variational optimization and applications in computer vision

Camille Couprie, joint work with Laurent Najman*, Hugues Talbot* and Leo Grady⁺. *LIGM, Université Paris Est, ESIEE, France +Siemens Corporate Research, Princeton, USA

20 October 2011

Introduction

Image Segmentation

Image restoration

Stereo-vision reconstruction

.

-∢ ≣ ▶

Þ

Regularity hypothesis

Classical formulation for solving our problems :

4 🗆 🕨 4

Regularity hypothesis

Classical formulation for solving our problems :

data f

solution x

Example : minimization of the total variation

Regularity hypothesis

Classical formulation for solving our problems :

data f

solution x

Example : minimization of the total variation

The solution x may be a labeling :

Regularity hypothesis

Classical formulation for solving our problems :

data f

$$\rightarrow \boxed{\min_{x} \int_{\Omega} \underbrace{||\nabla x(z)|| \quad \mathrm{d}z}_{\text{Regularization}} + \underbrace{\mathcal{D}(x, f)}_{\text{Data fidelity}}} \rightarrow$$

Example : minimization of the total variation

The solution x may be a labeling :

• partitionning an image in different regions

Regularity hypothesis

Classical formulation for solving our problems :

 $\rightarrow \left| \min_{x} \int_{\Omega} \underbrace{||\nabla x(z)|| \quad dz}_{\text{Regularization}} + \underbrace{\mathcal{D}(x, f)}_{\text{Data fidelity}} \right| -$

solution x

data *f*

Example : minimization of the total variation

The solution x may be a labeling :

- partitionning an image in different regions
- estimating a depth map for stereo-vision reconstruction

Regularity hypothesis

Classical formulation for solving our problems :

data f

$$\rightarrow \boxed{\min_{x} \int_{\Omega} \underbrace{||\nabla x(z)|| \quad dz}_{\text{Regularization}} + \underbrace{||x - f||_{2}^{2}}_{\text{Data fidelity}}} \rightarrow$$

solution *x*

Example : minimization of the total variation

The solution x may be a labeling :

- partitionning an image in different regions
- estimating a depth map for stereo-vision reconstruction
- restored intensities of an image f [ROF model, 1992]

< <p>I > < </p>

Genericity of graph-based methods

Image restoration

<</l>

Outline

I - Standard graph-based methods

II - Flow based methods

- Segmentation : Combinatorial Continuous Maximum Flow
 - Restoration : Dual constrained TV-based regularization

III - Power watershed

- A new graph-based optimization framework
- Image segmentation
- Image filtering (nonconvex optimization)
- Surface reconstruction

IV - Conclusion

Outline

• I - Standard graph-based methods

Ē

1) Watershed method

2) Classical Max Flow / Graph cut method

3) Random Walker method

Some graph-based segmentation tools

• Watershed [Beucher-Lantuéjoul 1979, Vincent-Soille 1991]

Advantages • Fast

E

-∢ ≣ ▶

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools

• Watershed [Beucher-Lantuéjoul 1979, Vincent-Soille 1991]

Advantages

Fast

Multilabel

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools

• Watershed [Beucher-Lantuéjoul 1979, Vincent-Soille 1991]

Advantages

- Fast
- Multilabel
- Robust to markers size

4 🗆 🕨 4

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools

• Watershed [Beucher-Lantuéjoul 1979, Vincent-Soille 1991]

Advantages

- Fast
- Multilabel
- Robust to markers size

Drawbacks

Leaking effect

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools

• Watershed [Beucher-Lantuéjoul 1979, Vincent-Soille 1991]

Advantages

- Fast
- Multilabel
- Robust to markers size

Drawbacks

- Leaking effect
- Non unique solution (difficult to get a non algorithmically dependent result)

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Watershed and Maximum Spanning Forest equivalence

- MSF : set of trees
 - spanning all nodes
 - not connecting different seeds
 - such that the total sum of their weights is maximum.
- If seeds are the maxima of the weight function, every MSF cut on the weight function is a watershed cut [Cousty *et al* 07, the drop of water principle]

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Watershed and Maximum Spanning Forest equivalence

- MSF : set of trees
 - spanning all nodes
 - not connecting different seeds
 - such that the total sum of their weights is maximum.
- If seeds are the maxima of the weight function, every MSF cut on the weight function is a watershed cut [Cousty *et al* 07, the drop of water principle]

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Max Spanning Forest (Watershed)

E

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Graph Cuts

• Graph cuts / Max flow

Advantages

 Energy formulation → extends to a large class of problems

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Graph Cuts

• Graph cuts / Max flow

Advantages

 Energy formulation → extends to a large class of problems

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Graph Cuts

• Graph cuts / Max flow

Advantages

 Energy formulation → extends to a large class of problems

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Graph Cuts

• Graph cuts / Max flow

Advantages

- Energy formulation → extends to a large class of problems
- Robust to markers placement

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Graph Cuts

• Graph cuts / Max flow

Advantages

- Energy formulation → extends to a large class of problems
- Robust to markers placement

Drawbacks

• Bias toward small contours

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Graph Cuts

• Graph cuts / Max flow

Advantages

- Energy formulation → extends to a large class of problems
- Robust to markers placement

Drawbacks

- Bias toward small contours
- Block artifacts

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Graph Cuts

• Graph cuts / Max flow

Advantages

- Energy formulation → extends to a large class of problems
- Robust to markers placement

Drawbacks

- Bias toward small contours
- Block artifacts
- Super-linear complexity

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Graph Cuts

• Graph cuts / Max flow

Advantages

- Energy formulation → extends to a large class of problems
- Robust to markers placement

Drawbacks

- Bias toward small contours
- Block artifacts
- Super-linear complexity
- Limited to binary (2 labels) segmentation

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Graph cuts

Graph cuts segmentation

Image: 0

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Graph cuts

Graph cuts segmentation

Image: 0

1) Watershed method

- Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Random Walker

- Combinatorial Dirichlet problem. Seeded segmentation [Grady 2006]
- Resolution of system of linear equations.

1) Watershed method

- Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Random Walker

- Combinatorial Dirichlet problem. Seeded segmentation [Grady 2006]
- Resolution of system of linear equations.

Advantages

 Energy formulation → extends to a large class of problems

1) Watershed method

- Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Random Walker

- Combinatorial Dirichlet problem. Seeded segmentation [Grady 2006]
- Resolution of system of linear equations.

Advantages

- Energy formulation → extends to a large class of problems
- No blocking artefacts

1) Watershed method

- Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Random Walker

- Combinatorial Dirichlet problem. Seeded segmentation [Grady 2006]
- Resolution of system of linear equations.

Advantages

- Energy formulation → extends to a large class of problems
- No blocking artefacts

Drawbacks

 Requires a more centered markers placement

1) Watershed method

- Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Random Walker

- Combinatorial Dirichlet problem. Seeded segmentation [Grady 2006]
- Resolution of system of linear equations.

Advantages

- Energy formulation → extends to a large class of problems
- No blocking artefacts

Drawbacks

 Requires a more centered markers placement

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Random Walker

- Combinatorial Dirichlet problem. Seeded segmentation [Grady 2006]
- Resolution of system of linear equations.

Advantages

- Energy formulation → extends to a large class of problems
- No blocking artefacts

Drawbacks

- Requires a more centered markers placement
- Super-linear complexity

1) Watershed method

- 2) Classical Max Flow / Graph cut method
- 3) Random Walker method

Some graph-based segmentation tools : Random Walker

Random Walker segmentation

I – Standard graph-based methods

- 3) Random Walker method

Outline

I - Standard graph-based methods

II - Flow based methods

- Segmentation : Combinatorial Continuous Maximum Flow
 - Restoration : Dual constrained TV-based regularization

III - Power watershed

- A new graph-based optimization framework
- Image segmentation
- Image filtering (nonconvex optimization)
- Surface reconstruction

IV - Conclusion

I - Standard graph-based methods

Outline

- 3) Random Walker method

II - Flow based methods

Segmentation : Combinatorial Continuous Maximum Flow

Restoration : Dual constrained TV-based regularization

1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

I - Standard graph-based methods

Outline

- 3) Random Walker method

II - Flow based methods

Segmentation : Combinatorial Continuous Maximum Flow

Restoration : Dual constrained TV-based regularization

1

< D > < B > < E > < E >

Flow constrained image segmentation

▲□▶▲□▶▲目

▶ ◀ Ē ▶

2) Flow constrained image restoration

Minimal surfaces

Ē.

1) Flow constrained image segmentation

Motivation

- In the continuum : Minimal cut (surface in 3D) is dual of continuous maximum flow [Strang 1983]
- In the classic discrete case min-cut (= "Graph cuts")/ max flow duality but grid bias in the solution
- Recent trend : employ a spatially continuous maximum flow to produce solutions with no grid bias

Max Flow (Graph Cuts)

Continuous Max Flow [Appleton-Talbot 2006]

Flow constrained image segmentation
 Flow constrained image restoration

Motivation

• [Appleton-Talbot 2006, generalized by Unger-Pock-Bishof 2008] Fastest known continuous max-flow algorithm has **no stopping criteria** and **no converge proof**.

Our contribution : Combinatorial Continuous Maximum Flow

- a new discrete isotropic formulation
- avoids blockiness artifacts
- is proved to converge, is fast
- generalizes to arbitrary graphs

[In SIAM Journal on Imaging Sciences, 2011]

Flow constrained image segmentation
 Flow constrained image restoration

Combinatorial Continuous Maximum Flow (CCMF)

• Incidence matrix of a graph noted A

Continuous MaxFlow	Combinatorial formulation	
$\max_{\vec{F}} \vec{F}_{st}$	max F _{st}	max F
s.t. $\nabla \cdot \overrightarrow{F} = 0,$ $ \overrightarrow{F} \le g.$	s.t. $A^T F = 0,$ $ A^T F^2 \le g^2$	5.0.
		q

g defined on nodes

GraphCuts

MaxFlow.

t. $A^T F = 0$, $|F| \le g$

g defined on edges

Image: Image:

- CCMF : convex problem
- Resolution by an interior point method.

II - Flow based methods

□ ▶ < fi

Combinatorial Continuous Maximum Flow (CCMF)

• Incidence matrix of a graph noted A

Continuous	Combinatorial	MaxFlow,
MaxFlow	formulation	GraphCuts
$\max_{\overrightarrow{F}} \qquad \overrightarrow{F}_{st}$ s.t. $\nabla \cdot \overrightarrow{F} = 0,$ $ \overrightarrow{F} \le g.$	$\begin{array}{ll} \max_{F} & F_{st} \\ \text{s.t.} & \mathbf{A}^{T}F = 0, \\ & \mathbf{A}^{T} F^{2} \leq g^{2} \end{array}$	$\begin{array}{ll} \max_{F} & F_{st} \\ \text{s.t.} & A^{T}F = 0, \\ & F \leq g \end{array}$

- CCMF : convex problem
- Resolution by an interior point method.

q defined on nodes

1) Flow constrained image segmentation

Flow constrained image restoration

Discrete formulation on graphs - notations

Graph of N vertices, M edges

Incidence matrix $A \in \mathbb{R}^{M \times N}$

		p_1	p_2	p_3	<i>p</i> 4
	e_1	-1	1	0	0
Λ	e_2	-1	0	1	0
$A \equiv$	e_3	0	-1	1	0
	e_4	0	-1	0	1
	e_4	0	0	$^{-1}$	1

- A gradient operator
- A^{\top} divergence operator
- allows general formulation of problems on arbitrary graphs

Flow constrained image segmentation
 Flow constrained image restoration

Image: 0

Combinatorial Continuous Maximum Flow (CCMF)

• Incidence matrix of a graph noted A

Continuous	Combinatorial	MaxFlow,
MaxFlow	formulation	GraphCuts
$\max_{\overrightarrow{F}} F_{st}$ s.t. $\nabla \cdot \overrightarrow{F} = 0,$ $ \overrightarrow{F} \leq g.$	$\begin{array}{ll} \max_{F} & F_{st} \\ \text{s.t.} & A^{T}F = 0, \\ & A^{T} F^{2} \leq g^{2} \end{array}$	$egin{array}{cc} \max & F_{st} \ & \ & \ & \ & \ & \ & \ & \ & \ & \ $

• CCMF : convex problem

• Resolution by an interior point method.

q defined on nodes

Flow constrained image segmentation
 Flow constrained image restoration

Image: 0

Combinatorial Continuous Maximum Flow (CCMF)

• Incidence matrix of a graph noted A

Continuous	Combinatorial	MaxFlow,
MaxFlow	formulation	GraphCuts
$\begin{array}{ll} \max & F_{st} \\ \text{s.t.} & \nabla \cdot \overrightarrow{F} = 0, \\ & \overrightarrow{F} \leq g. \end{array}$	$\begin{array}{ll} \max_{F} & F_{st} \\ \text{s.t.} & A^{T}F = 0, \\ & A^{T} F^{2} \leq g^{2} \end{array}$	$\begin{array}{ll} \max_{F} & F_{st} \\ \text{s.t.} & A^{T}F = 0, \\ & F \leq g \\ g \text{ defined on edges} \end{array}$

- CCMF : convex problem
- Resolution by an interior point method.

Flow constrained image segmentation
 Flow constrained image restoration

Image: 0

Combinatorial Continuous Maximum Flow (CCMF)

• Incidence matrix of a graph noted A

Continuous	Combinatorial	MaxFlow,
MaxFlow	formulation	GraphCuts
$\begin{array}{ll} \max & F_{st} \\ \text{s.t.} & \nabla \cdot \overrightarrow{F} = 0, \\ & \overrightarrow{F} \leq g. \end{array}$	$\begin{array}{ll} \max_{F} & F_{st} \\ \text{s.t.} & A^{T}F = 0, \\ & A^{T} F^{2} \leq g^{2} \end{array}$	$\begin{array}{ll} \max_{F} & F_{st} \\ \text{s.t.} & A^{T}F = 0, \\ & F \leq g \\ g \text{ defined on edges} \end{array}$

- CCMF : convex problem
- Resolution by an interior point method.

Flow constrained image segmentation

<</l>

Flow constrained image restoration

Graph Cuts vs CCMF

E

I) Flow constrained image segmentation
2) Flow constrained image restoration

CCMF dual problem

• The dual of the CCMF problem is

$$\begin{array}{c} \min_{\lambda \ge 0, \nu} \sum_{\nu_i \in V} \underbrace{\lambda_i g_i^2}_{\text{weighted cut}} + \underbrace{\frac{1}{4} \sum_{e_i \in E \setminus \{s,t\}} \frac{(\nu_i - \nu_j)^2}{\lambda_i + \lambda_j}}_{\text{smoothness term}} + \underbrace{\frac{1}{4} \frac{(\nu_s - \nu_t - 1)^2}{\lambda_s + \lambda_t}}_{\text{source-sink}}_{\text{enforcement}} \\
\end{array}$$

$$\begin{array}{c} \underset{\text{lmage}}{\underset{\text{with seeds}}{}} \\ \underset{\text{with seeds}}{\overset{\text{lmage}}{}} \\ \underset{\text{with seeds}}{\overset{\text{lmage}}{}} \\ \underset{\text{with seeds}}{\overset{\text{lmage}}{}} \\ \underset{\text{with seeds}}{\overset{\text{lmage}}{}} \\ \underset{\text{lmage}}{\overset{\text{lmage}}{}} \\ \underset{\text{with seeds}}{\overset{\text{lmage}}{}} \\ \underset{\text{with seeds}}{\overset{\text{lmage}}{}} \\ \underset{\text{lmage}}{\overset{\text{lmage}}{}} \\ \underset{\text{lmage}}{\overset{\text{lmage}}{} \\ \underset{\text{lmage}}{\overset{\text{lmage}}{}} \\ \underset{\text{lmage}}{\overset{\text{lmage}}{} \\ \underset{\text{lmage}}{\overset{\text{lmage}}{\atop \underset{\text{lmage}}{} \\ \underset{\text{lmage}}{\overset{\text{lmage}}{} \\ \underset{\text{lmage}}{\overset{\text{lmage}}{\atop \underset{\text{lmage}}{ \\ \underset{\text{lmage}}{\atop \underset{\text{lmage}}{ \\ \underset{\text{lmage}}{ \atop \underset{\text{lmage}}{ \\ \underset{\text{lmage}}{ \\ \underset{\text{lmage}}{ \atop \underset{\text{lmage}}{ \atop \underset{\text$$

Camille Couprie

21 / 60

Flow constrained image segmentation
 Flow constrained image restoration

Minimal surfaces

Catenoid test problem :

- source constituted by two full circles
- sink by the remaining boundary of the image, constant metric *g*

analytic minimal CCMF result surface isosurface of uRoot Mean Square Error between the surfaces : 0.75 (Appleton-Talbot error : 1.98)

1) Flow constrained image segmentation

Flow constrained image restoration

Comparison with Graph cuts

Graph cuts result

GC CCMF

GC

CCMF

GC

<ロト<回ト<三</td>

ССМБ

E

1) Flow constrained image segmentation

Comparison with Appleton-Talbot method

Graph-based variational optimization

Flow constrained image segmentation

2) Flow constrained image restoration

Genericity of the method

Unseeded segmentation

Classification

Þ

Flow constrained image segmentation

Flow constrained image restoration

Genericity of the method

Unseeded segmentation

Classification

∢ ≣ ▶

Þ

1) Flow constrained image segmentation

2) Flow constrained image restoration

Dual constrained TV based formulation

- $f \in \mathbb{R}^Q$ observed image
- $x \in \mathbb{R}^N$ restored image
- $F \in \mathbb{R}^M$ flow, projection vector
- $H \in \mathbb{R}^{Q \times N}$ linear operator (e.g. degradation matrix)

1) Flow constrained image segmentation

2) Flow constrained image restoration

Dual constrained TV based formulation

- $f \in \mathbb{R}^Q$ observed image
- $x \in \mathbb{R}^N$ restored image
- $F \in \mathbb{R}^M$ flow, projection vector
- $H \in \mathbb{R}^{Q \times N}$ linear operator (e.g. degradation matrix)

1) Flow constrained image segmentation

2) Flow constrained image restoration

Dual constrained TV based formulation

- $f \in \mathbb{R}^Q$ observed image
- $x \in \mathbb{R}^N$ restored image
- $F \in \mathbb{R}^M$ flow, projection vector
- $H \in \mathbb{R}^{Q \times N}$ linear operator (e.g. degradation matrix)

1) Flow constrained image segmentation

2) Flow constrained image restoration

Dual constrained TV based formulation

- $f \in \mathbb{R}^Q$ observed image
- $x \in \mathbb{R}^N$ restored image
- $F \in \mathbb{R}^M$ flow, projection vector
- $H \in \mathbb{R}^{Q \times N}$ linear operator (e.g. degradation matrix)

1) Flow constrained image segmentation

2) Flow constrained image restoration

Dual constrained TV based formulation

- $f \in \mathbb{R}^Q$ observed image
- $x \in \mathbb{R}^N$ restored image
- $F \in \mathbb{R}^M$ flow, projection vector
- $H \in \mathbb{R}^{Q \times N}$ linear operator (e.g. degradation matrix)

1) Flow constrained image segmentation

2) Flow constrained image restoration

Dual constrained TV based formulation

- $f \in \mathbb{R}^Q$ observed image
- $x \in \mathbb{R}^N$ restored image
- $F \in \mathbb{R}^M$ flow, projection vector
- $H \in \mathbb{R}^{Q \times N}$ linear operator (e.g. degradation matrix)
- Combinatorial variant of TV with flexible choice for C

1) Flow constrained image segmentation

2) Flow constrained image restoration

Dual constrained TV based formulation

- $f \in \mathbb{R}^Q$ observed image
- $x \in \mathbb{R}^N$ restored image
- $F \in \mathbb{R}^M$ flow, projection vector
- $H \in \mathbb{R}^{Q \times N}$ linear operator (e.g. degradation matrix)
- Combinatorial variant of TV with flexible choice for C
- $C = \bigcap_{i=1}^{s} C_i$ decomposed in an intersection of convex sets

Flow constrained image segmentation

2) Flow constrained image restoration

Dual problem

• Fenchel-Rockafellar dual problem :

$$\min_{F\in\mathbb{R}^M} \sum_{i=1}^s f_i(F) + f_{s+1}(F)$$

E

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1) Flow constrained image segmentation

2) Flow constrained image restoration

Dual problem

• Fenchel-Rockafellar dual problem :

$$\min_{F \in \mathbb{R}^{M}} \sum_{i=1}^{s} \iota_{C_{i}}(F) + f_{s+1}(F)$$

where ι_{C} : indicator function of convex C (=0 in C , + ∞ outside),
 $f_{s+1}: F \mapsto \frac{1}{2}F^{\top}A\Gamma A^{\top}F - F^{\top}A\Gamma H^{\top}f$, and $\Gamma = (H^{\top}H)^{-1}$.

E

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1) Flow constrained image segmentation

Image: A matrix

2) Flow constrained image restoration

Dual problem

• Fenchel-Rockafellar dual problem :

$$\min_{F \in \mathbb{R}^{M}} \sum_{i=1}^{s} \iota_{C_{i}}(F) + f_{s+1}(F)$$

where ι_{C} : indicator function of convex C (=0 in C , + ∞ outside),
 $f_{s+1}: F \mapsto \frac{1}{2}F^{\top}A\Gamma A^{\top}F - F^{\top}A\Gamma H^{\top}f$, and $\Gamma = (H^{\top}H)^{-1}$.

• The primal problem admits a unique solution x^* .

• If
$$F^*$$
 is a solution to the dual problem,
 $x^* = \Gamma \left(H^\top f - A^\top F^* \right).$

E

-∢ ≣ ▶

1) Flow constrained image segmentation

2) Flow constrained image restoration

Dual problem

• Fenchel-Rockafellar dual problem :

$$\min_{F \in \mathbb{R}^{M}} \sum_{i=1}^{s} \iota_{C_{i}}(F) + f_{s+1}(F)$$

where ι_{C} : indicator function of convex C (=0 in C , + ∞ outside),
 $f_{s+1}: F \mapsto \frac{1}{2}F^{\top}A\Gamma A^{\top}F - F^{\top}A\Gamma H^{\top}f$, and $\Gamma = (H^{\top}H)^{-1}$.

- The primal problem admits a unique solution x^* .
- If F^* is a solution to the dual problem, $x^* = \Gamma \left(H^\top f - A^\top F^* \right).$
- Proximity operator : $\forall y \in \mathbb{R}^N$, $\operatorname{prox}_f y = \arg \min_{u \in \mathbb{R}^N} f(u) + \frac{1}{2} ||u - y||^2$.

Flow constrained image segmentation
 Flow constrained image restoration

Parallel ProXimal Algorithm (PPXA) optimizing DCTV

[Pesquet, Combettes, 2008], minimize_F $\sum_{i=1}^{s} f_i(F) + f_{s+1}(F)$

Flow constrained image segmentation
 Flow constrained image restoration

Parallel ProXimal Algorithm (PPXA) optimizing DCTV

[Pesquet, Combettes, 2008], minimize_F $\sum_{i=1}^{s} f_i(F) + f_{s+1}(F)$

Flow constrained image segmentation
 Flow constrained image restoration

Parallel ProXimal Algorithm (PPXA) optimizing DCTV

[Pesquet, Combettes, 2008], minimize_F $\sum_{i=1}^{s} f_i(F) + f_{s+1}(F)$

Flow constrained image segmentation
 Flow constrained image restoration

Parallel ProXimal Algorithm (PPXA) optimizing DCTV

[Pesquet, Combettes, 2008], minimize_F $\sum_{i=1}^{s} f_i(F) + f_{s+1}(F)$

• Linear system resolution

Flow constrained image segmentation

2) Flow constrained image restoration

Results

• Applications in data restoration

Ē

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Flow constrained image segmentation

2) Flow constrained image restoration

Results

- Applications in data restoration
- Image denoising and deblurring

Original image

Noisy, blurry SNR=24.3dB

DCTV SNR=27.7dB

Þ

∢ ≣ ≯
Flow constrained image segmentation

2) Flow constrained image restoration

Results

• Applications in data restoration

• Image fusion

Original image

Noisy SNR=17.3dB

blurry SNR=23.9dB

DCTV SNR=26.5dB

∢ ≣ ≯

Þ

Flow constrained image segmentation

+ • + •

2) Flow constrained image restoration

Results

- Applications in data restoration
- Mesh denoising

1) Flow constrained image segmentation

2) Flow constrained image restoration

Results

- Applications in data restoration
- Image denoising using image patches

Nonlocal graph Figure from P. Coupé et al.

Original image

Noisy image PSNR=28.1dB

Nonlocal DCTV PSNR=35 dB

<</l>

1) Flow constrained image segmentation

2) Flow constrained image restoration

Results

- Applications in data restoration
- Image denoising using image patches

Nonlocal graph Figure from P. Coupé et al.

Original image

Noisy image PSNR=28.1dB

Nonlocal DCTV PSNR=35 dB

<</l>

1) Flow constrained image segmentation

2) Flow constrained image restoration

Results

- Applications in data restoration
- Image denoising using image patches

Nonlocal graph Figure from P. Coupé et al.

Original image

Noisy image PSNR=28.1dB

Nonlocal DCTV PSNR=35 dB

1) Flow constrained image segmentation

2) Flow constrained image restoration

Conclusion on the flow-based methods

- Discrete isotropic formulation of the max flow problem that avoids blockiness artifacts
- Guaranteed convergence of the Interior Point method
- Works on arbitrary graphs
- Extension to multi-label problems in a new framework : "dual constrained total variation"

Outline

a I - Introduction

II - Flow based methods

- Segmentation : Combinatorial Continuous Maximum Flow
- Restoration : Dual constrained TV-based regularization

III - Power watershed

- A new graph-based optimization framework
- Image segmentation
- Image filtering
- Surface reconstruction

IV - Conclusion

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Outline

III - Power watershed

- A new graph-based optimization framework
- Image segmentation
- Image filtering
- Surface reconstruction

• IV - Conclusion

E

-∢ ≣ ▶

<<p>< □ > < □ > < □</p>

Outline

III - Power watershed

A new graph-based optimization framework

- Image segmentation
- Image filtering
- Surface reconstruction

IV - Conclusion

E

<ロ><日><日><日><日><日><日><日><日><日<</td>

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

What does all those algorithms have in common?

Graph cuts

Shortest paths

Random walker

Watersheds

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Previously established links

Þ

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Previously established links

q = 1: Graph cuts [Boykov-Joly 2001 (only for 2 labels /)]

<ロト<回ト<三</td>

- 1) Image segmentation
- Nonconvex Image filtering

- 3) Stereo-vision
- 4) Surface reconstruction

Previously established links

q = 2 : Random walker [Grady 2006]

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Previously established links

 $q \rightarrow \infty$: Shortest paths [Sinop *et al* 2007]

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Previously established links

 $p \rightarrow \infty$: MSF (Watershed) [Allène et al. 2007]

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Power watershed framework

E

-∢ ≣ ▶

Image: A matrix

Power watershed framework

$$x_{p,q}^* = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}{}^{p} |x_i - x_j|^{q}}_{\text{Smoothness term}} + \underbrace{\sum_{v_i \in V} w_{i}{}^{p} |x_i - I_i|^{q}}_{\text{Data term}}$$

p q	0	finite	∞
1	Reduction to seeds	Graph cuts	Max Spanning Forest (watershed) [Allène et al. 07]
2	ℓ_2 -norm Voronoi	Random walker	
∞	ℓ_1 -norm Voronoi	ℓ_1 -norm Voronoi	Shortest Path [Sinop et al. 07]

Power watershed framework

$$x_{p,q}^* = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}{}^{p} |x_i - x_j|^{q}}_{\text{Smoothness term}} + \underbrace{\sum_{v_i \in V} w_{i}{}^{p} |x_i - I_i|^{q}}_{\text{Data term}}$$

p q	0	finite	∞
1	Reduction to seeds	Graph cuts	Max Spanning Forest (watershed) [Allène et al. 07]
2	ℓ_2 -norm Voronoi	Random walker	
∞	ℓ_1 -norm Voronoi	ℓ_1 -norm Voronoi	Shortest Path [Sinop et al. 07]

Power watershed framework

$$x_{p,q}^* = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}{}^{p} |x_i - x_j|^{q}}_{\text{Smoothness term}} + \underbrace{\sum_{v_i \in V} w_{i}{}^{p} |x_i - I_i|^{q}}_{\text{Data term}}$$

p q	0	finite	∞
1	Reduction to seeds	Graph cuts	Max Spanning Forest (watershed) [Allène et al. 07]
2	ℓ_2 -norm Voronoi	Random walker	
∞	ℓ_1 -norm Voronoi	ℓ_1 -norm Voronoi	Shortest Path [Sinop et al. 07]

Power watershed framework

$$x_{p,q}^* = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}{}^{p} |x_i - x_j|^{q}}_{\text{Smoothness term}} + \underbrace{\sum_{v_i \in V} w_{i}{}^{p} |x_i - I_i|^{q}}_{\text{Data term}}$$

p q	0	finite	∞
1	Reduction to seeds	Graph cuts	Max Spanning Forest (watershed) [Allène et al. 07]
2	ℓ_2 -norm Voronoi	Random walker	
∞	ℓ_1 -norm Voronoi	ℓ_1 -norm Voronoi	Shortest Path [Sinop et al. 07]

Power watershed framework

$$x_{p,q}^* = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}{}^{p} |x_i - x_j|^{q}}_{\text{Smoothness term}} + \underbrace{\sum_{v_i \in V} w_{i}{}^{p} |x_i - I_i|^{q}}_{\text{Data term}}$$

p q	0	finite	∞
1	Reduction to seeds	Graph cuts	Max Spanning Forest (watershed) [Allène et al. 07]
2	ℓ_2 -norm Voronoi	Random walker	
∞	ℓ_1 -norm Voronoi	ℓ_1 -norm Voronoi	Shortest Path [Sinop et al. 07]

Power watershed framework

$$x_{p,q}^* = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}{}^{p} |x_i - x_j|^{q}}_{\text{Smoothness term}} + \underbrace{\sum_{v_i \in V} w_{i}{}^{p} |x_i - I_i|^{q}}_{\text{Data term}}$$

mootimess term

<<p>< □ > < □ > < 三 > < 三 > < 三 > <</p>

p q	0	finite	∞
1	Reduction to seeds	Graph cuts	Max Spanning Forest (watershed) [Allène et al. 07]
2	ℓ_2 -norm Voronoi	Random walker	
∞	ℓ_1 -norm Voronoi	ℓ_1 -norm Voronoi	Shortest Path [Sinop et al. 07]
[Commission Created National Talle at ICCV 2000 DAMA 2011]			

[Couprie-Grady-Najman-Talbot, ICCV 2009, PAMI 2011]

3

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Power watershed framework

$$x_{p,q}^{*} = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}^{p} |x_{i} - x_{j}|^{q}}_{\text{Smoothness term}} + \underbrace{\sum_{v_{i} \in V} w_{i}^{p} |x_{i} - I_{i}|^{q}}_{\text{Data term}}$$

$$\bar{x} = \lim_{p \to \infty} x_{p,q}^*$$

E

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- Surface reconstruction

Convergence of RW when $p \rightarrow \infty$ toward MSF cut

Input seeds

$$x_{1}^{*} = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij} |x_{i} - x_{j}|^{2}}_{\text{Smoothness term}} + \underbrace{\mathcal{D}(x)}_{\text{Data fidelity}}$$

solution
$$x_1^*$$
 cut : threshold of x_1^*

∢ ≣ ≯

- 1) Image segmentation
- Nonconvex Image filtering
- Stereo-vision
- Surface reconstruction

Convergence of RW when $p \rightarrow \infty$ toward MSF cut

Input seeds

$$x_{2}^{*} = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}^{2} |x_{i} - x_{j}|^{2}}_{\text{Smoothness term}} + \underbrace{\mathcal{D}(x)}_{\text{Data fidelity}}$$

- 1) Image segmentation
- Nonconvex Image filtering
- Stereo-vision
- Surface reconstruction

Convergence of RW when $p \rightarrow \infty$ toward MSF cut

Input seeds

$$x_{3}^{*} = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}^{3} |x_{i} - x_{j}|^{2}}_{\text{Smoothness term}} + \underbrace{\mathcal{D}(x)}_{\text{Data fidelity}}$$

solution
$$x^*_3$$
 cut : threshold of x^*_3

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- Surface reconstruction

Convergence of RW when $p \rightarrow \infty$ toward MSF cut

Input seeds

$$x_{4}^{*} = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}}_{\text{Smoothness term}} |u_{ij} - u_{j}|^{2} + \underbrace{\mathcal{D}(x)}_{\text{Data fidelity}}$$

solution
$$x_4^*$$
 cut : threshold of x_4^*

Þ

글 🕨 📲 클

- 1) Image segmentation
- Nonconvex Image filtering
- Stereo-vision
- Surface reconstruction

Convergence of RW when $p \rightarrow \infty$ toward MSF cut

Input seeds

$$x_{6}^{*} = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij} \ ^{6} |x_{i} - x_{j}|^{2}}_{\text{Smoothness term}} + \underbrace{\mathcal{D}(x)}_{\text{Data fidelity}}$$

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- Surface reconstruction

Convergence of RW when $p \rightarrow \infty$ toward MSF cut

Input seeds

$$x_{9}^{*} = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}}_{\text{Smoothness term}} |x_{i} - x_{j}|^{2} + \underbrace{\mathcal{D}(x)}_{\text{Data fidelity}}$$

solution
$$x_{9}^{*}$$
 cut : threshold of x_{9}^{*}

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- Surface reconstruction

Convergence of RW when $p \rightarrow \infty$ toward MSF cut

Input seeds

$$x_{13}^{*} = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}^{13} |x_{i} - x_{j}|^{2}}_{\text{Smoothness term}} + \underbrace{\mathcal{D}(x)}_{\text{Data fidelity}}$$

solution
$$x_{13}^*$$
 cut : threshold of x_{13}^*

Þ

∃

- 1) Image segmentation
- Nonconvex Image filtering
- Stereo-vision
- Surface reconstruction

Convergence of RW when $p \rightarrow \infty$ toward MSF cut

Input seeds

$$x_{18}^* = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}^{18} |x_i - x_j|^2}_{\text{Smoothness term}} + \underbrace{\mathcal{D}(x)}_{\text{Data fidelity}}$$

solution
$$x_{18}^*$$
 cut : threshold of x_{18}^*

Þ

글 ▶ ◀ 글

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- Surface reconstruction

Convergence of RW when $p \rightarrow \infty$ toward MSF cut

Input seeds

$$x_{24}^{*} = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}^{24} |x_{i} - x_{j}|^{2}}_{\text{Smoothness term}} + \underbrace{\mathcal{D}(x)}_{\text{Data fidelity}}$$

solution
$$x_{24}^*$$
 cut : threshold of x_{24}^*

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- Surface reconstruction

Convergence of RW when $p \rightarrow \infty$ toward MSF cut

Input seeds

$$x_{30}^{*} = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}^{30} |x_{i} - x_{j}|^{2}}_{\text{Smoothness term}} + \underbrace{\mathcal{D}(x)}_{\text{Data fidelity}}$$

solution
$$x_{30}^*$$
 cut : threshold of x_{30}^*

Þ

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- Surface reconstruction

Convergence of RW when $p \rightarrow \infty$ toward MSF cut

Input seeds

$$x_{p}^{*} = \arg\min_{x} \underbrace{\sum_{e_{ij} \in E} w_{ij}^{p} |x_{i} - x_{j}|^{q}}_{\text{Smoothness term}} + \underbrace{\mathcal{D}(x)}_{\text{Data fidelity}}$$

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Power watershed algorithm

- Choose an edge with maximal weight e_{max}. Let S the set of edges connected to e_{max} with the same weight as e_{max}.
- If S does not contain vertices that have different labels, merge the nodes of S into one node, otherwise minimize E_{1,q} on S.
- Repeat steps 1 and 2 until all vertices are labeled.

$$ar{x} = \lim_{p o \infty} rgmin_x \sum_{e_{ij} \in E} w_{ij}^p |x_i - x_j|^q$$

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Power watershed algorithm

- Choose an edge with maximal weight e_{max}. Let S the set of edges connected to e_{max} with the same weight as e_{max}.
- If S does not contain vertices that have different labels, merge the nodes of S into one node, otherwise minimize E_{1,q} on S.
- Repeat steps 1 and 2 until all vertices are labeled.

$$ar{x} = \lim_{p o \infty} \arg\min_x \sum_{e_{ij} \in E} w_{ij}^p |x_i - x_j|^q$$
- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

- Choose an edge with maximal weight e_{max}. Let S the set of edges connected to e_{max} with the same weight as e_{max}.
- If S does not contain vertices that have different labels, merge the nodes of S into one node, otherwise minimize E_{1,q} on S.
- Repeat steps 1 and 2 until all vertices are labeled.

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

- Choose an edge with maximal weight e_{max}. Let S the set of edges connected to e_{max} with the same weight as e_{max}.
- If S does not contain vertices that have different labels, merge the nodes of S into one node, otherwise minimize E_{1,q} on S.
- Repeat steps 1 and 2 until all vertices are labeled.

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

- Choose an edge with maximal weight e_{max}. Let S the set of edges connected to e_{max} with the same weight as e_{max}.
- If S does not contain vertices that have different labels, merge the nodes of S into one node, otherwise minimize E_{1,q} on S.
- Repeat steps 1 and 2 until all vertices are labeled.

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

- Choose an edge with maximal weight e_{max}. Let S the set of edges connected to e_{max} with the same weight as e_{max}.
- If S does not contain vertices that have different labels, merge the nodes of S into one node, otherwise minimize E_{1,q} on S.
- Repeat steps 1 and 2 until all vertices are labeled.

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

- Choose an edge with maximal weight e_{max}. Let S the set of edges connected to e_{max} with the same weight as e_{max}.
- If S does not contain vertices that have different labels, merge the nodes of S into one node, otherwise minimize E_{1,q} on S.
- Repeat steps 1 and 2 until all vertices are labeled.

$$ar{x} = \lim_{p o \infty} rgmin_x \sum_{e_{ij} \in E} w_{ij}^p |x_i - x_j|^q$$

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

- Choose an edge with maximal weight e_{max}. Let S the set of edges connected to e_{max} with the same weight as e_{max}.
- If S does not contain vertices that have different labels, merge the nodes of S into one node, otherwise minimize E_{1,q} on S.
- Repeat steps 1 and 2 until all vertices are labeled.

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

- Choose an edge with maximal weight e_{max}. Let S the set of edges connected to e_{max} with the same weight as e_{max}.
- If S does not contain vertices that have different labels, merge the nodes of S into one node, otherwise minimize E_{1,q} on S.
- Repeat steps 1 and 2 until all vertices are labeled.

$$ar{x} = \lim_{p o \infty} rgmin_x \sum_{e_{ij} \in E} w_{ij}^p |x_i - x_j|^q$$

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

- Choose an edge with maximal weight e_{max}. Let S the set of edges connected to e_{max} with the same weight as e_{max}.
- If S does not contain vertices that have different labels, merge the nodes of S into one node, otherwise minimize E_{1,q} on S.
- Repeat steps 1 and 2 until all vertices are labeled.

$$ar{x} = \lim_{p o \infty} rgmin_x \sum_{e_{ij} \in E} w_{ij}^p |x_i - x_j|^q$$

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

- Choose an edge with maximal weight e_{max}. Let S the set of edges connected to e_{max} with the same weight as e_{max}.
- If S does not contain vertices that have different labels, merge the nodes of S into one node, otherwise minimize E_{1,q} on S.
- Repeat steps 1 and 2 until all vertices are labeled.

$$ar{x} = \lim_{p o \infty} rgmin_x \sum_{e_{ij} \in E} w_{ij}^p |x_i - x_j|^q$$

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

- Choose an edge with maximal weight e_{max}. Let S the set of edges connected to e_{max} with the same weight as e_{max}.
- If S does not contain vertices that have different labels, merge the nodes of S into one node, otherwise minimize E_{1,q} on S.
- Repeat steps 1 and 2 until all vertices are labeled.

$$ar{x} = {
m arg\ min}_x \ {
m lim}_{p o \infty} \sum_{e_{ij} \in E} \ w^p_{ij} |x_i - x_j|^q$$

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

- Choose an edge with maximal weight e_{max}. Let S the set of edges connected to e_{max} with the same weight as e_{max}.
- If S does not contain vertices that have different labels, merge the nodes of S into one node, otherwise minimize E_{1,q} on S.
- Repeat steps 1 and 2 until all vertices are labeled.

$$ar{x} = rgmin_x \lim_{p o \infty} \sum_{e_{ij} \in E} w_{ij}^p |x_i - x_j|^q$$

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

- Choose an edge with maximal weight e_{max}. Let S the set of edges connected to e_{max} with the same weight as e_{max}.
- If S does not contain vertices that have different labels, merge the nodes of S into one node, otherwise minimize E_{1,q} on S.
- Repeat steps 1 and 2 until all vertices are labeled.

$$ar{\mathbf{x}} = {
m arg\ min}_{\mathbf{x}}\ {
m lim}_{p
ightarrow\infty}\sum_{e_{ij}\in E}\ w^p_{ij}|\mathbf{x}_i - \mathbf{x}_j|^q$$

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Comparison of results

Input seeds

RandWalk

MaxSF

 $\mathsf{GraphCut}$

ShtPath

PW q = 2

Input seeds

RandWalk

MaxSF

GraphCut

ShtPath

PW q = 2 < ㅁ › < 라 › < 코 › < 코 ›

Ē.

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Comparison of results

Input seeds

 $\mathsf{RandWalk}$

MaxSF

 $\mathsf{GraphCut}$

ShtPath

PW q = 2

Input seeds

RandWalk

MaxSF

GraphCut

ShtPath

PW q = 2 < ㅁ › < 라 › < 코 › < 코 ›

E

1) Image segmentation

- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Algorithms comparison

- Evaluation on GrabCut database
- 2 sets of seeds to study robustness to seeds centering
 - seeds well centered around boundaries : Best performer : Shrt path, worst performer : GraphCuts
 - seeds less centered around boundaries : From best to worst : GraphCuts, PWshed, Random Walker, MaxSF, Shrt path

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- Surface reconstruction

Computation time

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Optimal multilabels segmentation

- I solutions $x^1, x^2, \dots x^l$ computed
- x^k computed by enforcing $\begin{cases} x^k(l^k) = 1\\ x^k(l^q) = 0 \text{ for all } q \neq k. \end{cases}$
- Each node *i* is affected to the label for which x_i^k is maximum :

$$s_i = rgmax_i^k max x_i^k$$

Input seeds

Segmentation by PowerWatershed (q = 2)

1) Image segmentation

- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Video segmentation

Prim's algorithm of Max Spanning Forest (Watershed)

Þ

∢ ≣ ▶

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Video segmentation

Power watersheds

▶ < ≣ ▶

E

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Unseeded segmentation

<ロ><日><日><日><日><日><日><日><日><日<</td>

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Unseeded segmentation

This is the first time that it is shown how to incorporate data unary terms into watershed computation.

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Non-convex diffusion using power watersheds

• Anisotropic diffusion [Perona-Malik 1990]

Image 100 iterations 200 iterations

Goals of this work :

- \bullet perform anisotropic diffusion using an ℓ_0 norm to avoid the blurring effect
- optimize a non convex energy using Power Watershed [Couprie-Grady-Najman-Talbot, ICIP 2010]

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Anisotropic diffusion and ℓ_0 norm

Leads to piecewise constant results Original image PW result

Image: A marked black

- L) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Stereovision using power watershed

• Compute the disparity map from two aligned images

• Labels correspond to the disparities, weights to similarity coefficients between blocks

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Surface reconstruction from a noisy set of dots

• Goal : given a noisy set of dots, find an explicit surface fitting the dots.

- 1) Image segmentation
- Nonconvex Image filtering

< □ ▶

- 3) Stereo-vision
- Surface reconstruction

Surface reconstruction from a noisy set of dots

• Goal : given a noisy set of dots, find an explicit surface fitting the dots.

- 1) Image segmentation
- Nonconvex Image filtering

4 🗆 🕨 4

- Stereo-vision
- Surface reconstruction

Surface reconstruction from a noisy set of dots

• Goal : given a noisy set of dots, find an explicit surface fitting the dots.

- 1) Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- Surface reconstruction

Surface reconstruction from a noisy set of dots

 Goal : given a noisy set of dots, find an explicit surface fitting the dots.

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

How to solve this problem

- Graph : 3D grid
- Here x represents the object indicator to recover.

$$\bar{x} = \lim_{p \to \infty} \arg \min_{x} \sum_{e_{ij} \in E} w_{ij}{}^{p} |x_i - x_j|^{q}$$

s.t. $x(F) = 1$, $x(B) = 0$

• weights : distance function from the set of dots to fit

Why PW are a good fit for this problem?

numerous plateaus around the dots to fit \rightarrow smooth isosurface is obtained

Power watershed solution

• • • •

- Image segmentation
- Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Comparisons

Graph cuts Size of required seeds

surface normals estimation required

Power watershed Size of required seeds

Graph-based variational optimization

- 1) Image segmentation
- 2) Nonconvex Image filtering
- 3) Stereo-vision
- 4) Surface reconstruction

Comparisons

Total variation

Graph cuts

Power watershed

4 🗆 🕨 4

- Fast, accurate, globally optimal surface reconstruction from noisy set of dots
- Robust to markers placement
- No normal estimation information required
- No post-processing smoothing step

IV - Conclusion

Outline

a I - Introduction

II - Flow based methods

- Segmentation : Combinatorial Continuous Maximum Flow
- Restoration : Dual constrained TV-based regularization

III - Power watershed

- A new graph-based optimization framework
- Image segmentation
- Image filtering
- Surface reconstruction

IV - Conclusion

Outline

• IV - Conclusion

Ē

<<p><ロ><</p>

Conclusion

Reformulation of classical max flow method

- Block artifacts of classical max flow
- Convergence issues AT-CMF
- Filtering using Graph cuts expensive

Power watersheds answers several problems of standard methods

- Non unique solution
- Leaking effect
- Random Walker, Graph cuts : super-linear complexity

Conclusion

Reformulation of classical max flow method

- Block artifacts of classical max flow Not present with CCMF
- Convergence issues AT-CMF
- Filtering using Graph cuts expensive

Power watersheds answers several problems of standard methods

- Non unique solution
- Leaking effect
- Random Walker, Graph cuts : super-linear complexity

Conclusion

Reformulation of classical max flow method

- Block artifacts of classical max flow Not present with CCMF
- Convergence issues AT-CMF Convergence guaranteed
- Filtering using Graph cuts expensive

Power watersheds answers several problems of standard methods

- Non unique solution
- Leaking effect
- Random Walker, Graph cuts : super-linear complexity
Conclusion

Reformulation of classical max flow method

- Block artifacts of classical max flow Not present with CCMF
- Convergence issues AT-CMF Convergence guaranteed
- Filtering using Graph cuts expensive Extention of the CCMF framework leads to a flexible filtering framework on graphs

- Non unique solution
- Leaking effect
- Random Walker, Graph cuts : super-linear complexity

Conclusion

Reformulation of classical max flow method

- Block artifacts of classical max flow Not present with CCMF
- Convergence issues AT-CMF Convergence guaranteed
- Filtering using Graph cuts expensive Extention of the CCMF framework leads to a flexible filtering framework on graphs

- Non unique solution Unique solution
- Leaking effect
- Random Walker, Graph cuts : super-linear complexity

Conclusion

Reformulation of classical max flow method

- Block artifacts of classical max flow Not present with CCMF
- Convergence issues AT-CMF Convergence guaranteed
- Filtering using Graph cuts expensive Extention of the CCMF framework leads to a flexible filtering framework on graphs

- Non unique solution Unique solution
- Leaking effect Reduction of the leaks
- Random Walker, Graph cuts : super-linear complexity

Conclusion

Reformulation of classical max flow method

- Block artifacts of classical max flow Not present with CCMF
- Convergence issues AT-CMF Convergence guaranteed
- Filtering using Graph cuts expensive Extention of the CCMF framework leads to a flexible filtering framework on graphs

- Non unique solution Unique solution
- Leaking effect Reduction of the leaks
- Random Walker, Graph cuts : super-linear complexity Quasi-linear experimentally. Worst case : RW complexity.

Conclusion

Reformulation of classical max flow method

- Block artifacts of classical max flow Not present with CCMF
- Convergence issues AT-CMF Convergence guaranteed
- Filtering using Graph cuts expensive Extention of the CCMF framework leads to a flexible filtering framework on graphs

- Non unique solution Unique solution
- Leaking effect Reduction of the leaks
- Random Walker, Graph cuts : super-linear complexity Quasi-linear experimentally. Worst case : RW complexity.
- More importantly : use of unary terms and multi labels opens the way to large field of applications

Continuous methods

Discrete calculus formulations

Optimization

Mathematical morphology

<</l>

Camille Couprie

Graph-based variational optimization

Þ

Next Challenge : Scene Parsing using New Global Energy Models

- Scene understanding of objects in video
- Need for efficient algorithm to process large amount of data
- Hierarchical CRF [Ladický-Russell-Kohli-Torr 2009] have shown good results.
- Study the possibility of applying this optimization approach for solving the problem using watersheds
- Advantages : speed, global optimality

Source code for segmentation available from:

http ://sourceforge.net/projects/powerwatershed/

E

-∢ ≣ ▶

<</l>

References

Journals

- C. Couprie, L. Grady, L. Najman, J.C. Pesquet, and H. Talbot : Constrained TV-based regularization on graphs. *Submitted, Oct. 2011.*
- C. Couprie, L. Grady, H. Talbot, and L. Najman : Combinatorial Continuous Max flows. In SIAM journal on imaging sciences, 2011.
- C. Couprie, L. Grady, L. Najman, and H. Talbot : Power Watersheds : A unifying graph-based optimization framework. In IEEE Trans. on PAMI 2011.

International conferences

- C. Couprie, H. Talbot, J.C. Pesquet, L. Najman, and L. Grady : Dual constrained tv-based regularization. In *Proc. of ICASSP, 2011.*
 - C. Couprie, X. Bresson, L. Najman, H. Talbot and L. Grady : Surface reconstruction using Power watersheds. In *Proc. of ISMM 2011*.
 - C. Couprie, L. Grady, L. Najman, and H. Talbot : Anisotropic diffusion using power watersheds. In *Proc. of ICIP 2010.*

Video segmentation : real life situation

Graph cut segmentation

< □ ▶ < 凸

Video segmentation : real life situation

Prim's algorithm of Max Spanning Forest (Watershed)

4 🗆 🕨 4

Video segmentation : real life situation

Segmentation using Powerwatershed

I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

Chapter 3 : Dual constrained TV based formulation

•
$$C = \bigcap_{i=1}^{m-1} C_i$$
, $C_i = \{F \in \mathbb{R}^M \mid \|\theta_i \cdot F\|_{\alpha} \le g_i\}, \alpha \ge 1$.

Example adapted to image denoising

- $g_i \in \mathbb{R}^N$ weight on vertex *i*, inverselly function of the gradient of *f* at node *i*.
- Flat area : weak gradient \rightarrow strong $g_i \rightarrow$ strong $F_{i,j}$ \rightarrow weak local variations of x.
- Contours : strong gradient \rightarrow weak $g_i \rightarrow$ weak $F_{i,j}$ \rightarrow large local variations of x allowed.

Dual problem

• Fenchel-Rockafellar dual problem :

$$\min_{F\in\mathbb{R}^{M}} \sum_{i=1}^{s} f_{i}(F) + f_{s+1}(F)$$

-4 ≣

Ē

-∢ ≣⇒

Dual problem

• Fenchel-Rockafellar dual problem :

$$\min_{F \in \mathbb{R}^{M}} \sum_{i=1}^{s} \iota_{C_{i}}(F) + f_{s+1}(F)$$

where ι_{C} : indicator function of convex C (=0 in C , + ∞ outside),
 $f_{s+1}: F \mapsto \frac{1}{2}F^{\top}A\Gamma A^{\top}F - F^{\top}A\Gamma H^{\top}f$, and $\Gamma = (H^{\top}H)^{-1}$.

Ē

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual problem

• Fenchel-Rockafellar dual problem :

$$\min_{F \in \mathbb{R}^{M}} \sum_{i=1}^{s} \iota_{C_{i}}(F) + f_{s+1}(F)$$

where ι_{C} : indicator function of convex C (=0 in C , + ∞ outside),
 $f_{s+1}: F \mapsto \frac{1}{2} F^{\top} A \Gamma A^{\top} F - F^{\top} A \Gamma H^{\top} f$, and $\Gamma = (H^{\top} H)^{-1}$.

$$C = \{F \in \mathbb{R}^{M} \mid |A^{\top}|F^{2} \leq g^{2}\}$$

$$C_{1} = \{F \in \mathbb{R}^{M} \mid C_{2} = \{F \in \mathbb{R}^{M} \mid C_{2} = \{F \in \mathbb{R}^{M} \mid C_{1} = \{F \in \mathbb{R}^{M} \mid C_{2} = \{F \in \mathbb{R}^{M} \mid C_{2} = \{F \in \mathbb{R}^{M} \mid C_{1} = \{F \in \mathbb{R}^{M} \mid C_{2} =$$

. .

< < > < < > <

Ē

-∢ ≣⇒

∢ ≣ ⊁

. .

Dual problem

• Fenchel-Rockafellar dual problem :

$$\min_{F \in \mathbb{R}^{M}} \sum_{i=1}^{s} \iota_{C_{i}}(F) + f_{s+1}(F)$$

where ι_{C} : indicator function of convex C (=0 in C , + ∞ outside),
 $f_{s+1}: F \mapsto \frac{1}{2}F^{\top}A\Gamma A^{\top}F - F^{\top}A\Gamma H^{\top}f$, and $\Gamma = (H^{\top}H)^{-1}$.

The primal problem admits a unique solution x̂.
If F̂ is a solution to the dual problem,

$$\widehat{x} = \Gamma\left(H^{\top}f - A^{\top}\widehat{F}\right).$$

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chaper 4 : Energy optimization and MSF cut

Theorem

If the weights are all different, any cut thresholding the optimal solution x minimizing $E_{p,q}$ when $q \ge 1$ and $p \to \infty$ is an MSF-cut.

Chapter 5 : Nonconvex optimization using PWsheds

$$\min_{x} \underbrace{\sum_{e_{ij} \in E} \sigma(x_i - x_j)}_{\text{smoothness term}} + \underbrace{\lambda \sum_{v_i \in V} \sigma(x_i - f_i)}_{\text{data fidelity term}}$$

4 🗆 🕨 4

E

Chapter 5 : Nonconvex optimization using PWsheds

$$\min_{x} \underbrace{\sum_{e_{ij} \in E} \sigma(x_i - x_j)}_{\text{smoothness term}} + \underbrace{\lambda \sum_{v_i \in V} \sigma(x_i - f_i)}_{\text{data fidelity term}}$$

• High gradient $x_i - x_j \Rightarrow \sigma = 1$

4 🗆 🕨 4

E

Chapter 5 : Nonconvex optimization using PWsheds

$$\min_{x} \underbrace{\sum_{e_{ij} \in E} \sigma(x_i - x_j)}_{\text{smoothness term}} + \underbrace{\lambda \sum_{v_i \in V} \sigma(x_i - f_i)}_{\text{data fidelity term}}$$

$$\sigma(x) = 1 - e^{-\alpha x^2}$$

$$\alpha = 100$$

$$\alpha = 1$$

$$\alpha = 10$$

$$x$$

• High gradient $x_i - x_j \Rightarrow \sigma = 1$

• No gradient
$$\Rightarrow \sigma = 0$$

Þ

$$\min_{x} \underbrace{\sum_{e_{ij} \in E} \sigma(x_i - x_j)}_{\text{smoothness term}} + \underbrace{\lambda \sum_{v_i \in V} \sigma(x_i - f_i)}_{\text{data fidelity term}}$$

$$\sigma(x) = 1 - e^{-\alpha x^2}$$

$$\alpha = 100$$

$$\alpha = 10$$

$$\alpha = 10$$

$$x$$

- High gradient $x_i x_j \Rightarrow \sigma = 1$
- No gradient $\Rightarrow \sigma = 0$
- Finite α, low gradient ⇒ 0 < σ < 1 Piecewise smooth result

Chapter 5 : Nonconvex optimization using PWsheds

$$\min_{x} \underbrace{\sum_{e_{ij} \in E} \sigma(x_i - x_j)}_{\text{smoothness term}} + \underbrace{\lambda \sum_{v_i \in V} \sigma(x_i - f_i)}_{\text{data fidelity term}}$$

$$\sigma(x) = 1 - e^{-\alpha x^2}$$

$$\alpha = 100$$

$$\alpha = 1$$

$$\alpha = 10$$

$$x$$

- High gradient $x_i x_j \Rightarrow \sigma = 1$
- No gradient $\Rightarrow \sigma = 0$
- Finite α, low gradient ⇒ 0 < σ < 1 Piecewise smooth result
- $\alpha \to \infty$, approximation of ℓ_0 norm low gradient $\Rightarrow \sigma = 1$ Piecewise constant result

• • • • • • • •

- Nonconvex energy
- Set the gradient of this energy to zero
- Fixed point iteration scheme with energy at step k :

- Nonconvex energy
- Set the gradient of this energy to zero
- Fixed point iteration scheme with energy at step k :

$$E_{k+1} = \sum_{e_{ij} \in E} e^{-\alpha (x_i^k - x_j^k)^2} (x_i^{k+1} - x_j^{k+1})^2 + \lambda \sum_{v_i \in V} e^{-\alpha (x_i^k - f_i)^2} (x_i^{k+1} - f_i)^2$$

- Nonconvex energy
- Set the gradient of this energy to zero
- Fixed point iteration scheme with energy at step *k* :

$$E_{k+1} = \sum_{e_{ij} \in E} \left(e^{-(x_i^k - x_j^k)^2} \right)^{\alpha} (x_i^{k+1} - x_j^{k+1})^2 + \lambda \sum_{v_i \in V} \left(e^{-(x_i^k - f_i)^2} \right)^{\alpha} (x_i^{k+1} - f_i)^2$$