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Abstract. We study hierachical segmentation in the framework of edge-
weighted graphs. We define ultrametric watersheds as topological water-
sheds null on the minima. We prove that there exists a bijection be-
tween the set of ultrametric watersheds and the set of hierarchical edge-
segmentations. We end this paper by showing how the proposed frame-
work allows to see constrained connectivity as a classical watershed-based
morphological scheme, which provides an efficient algorithm to compute
the whole hierarchy.

Introduction

This paper1 is a contribution to a theory of hierarchical (image) segmentation
in the framework of edge-weighted graphs. Image segmentation is a process of
decomposing an image into regions which are homogeneous according to some
criteria. Intuitively, a hierarchical segmentation represents an image at different
resolution levels.

In this paper, we introduce a subclass of edge-weighted graphs that we call
ultrametric watersheds. Theorem 13 states that there exists a one-to-one corre-
spondence, also called a bijection, between the set of indexed hierarchical edge-
segmentations and the set of ultrametric watersheds. In other words, to any
hierarchical edge-segmentation (whatever the way the hierarchy is built), it is
possible to associate a representation of that hierarchy by an ultrametric wa-
tershed. Conversely, from any ultrametric watershed, one can infer a indexed
hierarchical edge-segmentation.

This theorem is illustrated on Fig. 1, that is produced using the method pro-
posed in [1]: what is usually done is to compute from an original image (Fig. 1.a)
a hierarchical segmentation that can be represented by a dendrogram (Fig. 1.b,
see section 4). The borders of the segmentations extracted from the hierarchy
(such as the one seen in Fig. 1.c) can be stacked to form a map (Fig. 1.d) that
allows for the visual representation of the hierarchical segmentation. Theorem 13
gives a characterization of the class of maps (called ultrametric watersheds) that
represent a hierarchical segmentation; more surprisingly, Theorem 13 also states
that the dendrogram can be obtained after the ultrametric watershed has been
computed.
1 This work was partially supported by ANR grant SURF-NT05-2 45825



(a) Original image (b) Dendrogram of the hierarchical
segmentation

(c) One segmentation extracted
from the hierarchy

(d) An ultrametric watershed corre-
sponding to the hierarchical segmen-
tation

Fig. 1. An example of a hierarchical segmentation produced by the method of
L. Guigues [1] et al.. The classical order for reading the images is (a), (b), (c), (d). But
Theorem 13 states that the reading order can also be (a), (d), (c), (b) (see text).



Following [2], we can say that, independently of its theoretical interest, such
a bijection theorem is useful in practice. Any hierarchical segmentation problem
is a priori heterogeneous: assign to an edge-weighted graph an indexed hierarchy.
Theorem 13 allows such classification problem to become homogeneous: assign
to an edge-weighted graph a particular edge-weighted graph called ultrametric
watershed. Thus, Theorem 13 gives a meaning to questions like: which hierarchy
is the closest to a given edge-weighted graph with respect to a given measure or
distance?

The paper is organised as follow. Related works are examined in section 1.
We introduce segmentation on edges in section 2, and in section 3, we adapt the
topological watershed framework from the framework of graphs with discrete
weights on the nodes to the one of graphs with real-valued weights on the edges.
We then define (section 4) hierarchies and ultrametric distances. In section 5, we
introduce hierarchical edge-segmentations and ultrametric watersheds, the main
result being the existence of a bijection between these two sets (Th. 13). We
then propose (section 6) a convenient way to represent hierarchies as a discrete
image. In the last part of the paper, we show how the proposed framework allows
to see constrained connectivity [3] as a classical watershed-based morphological
scheme, thus providing an efficient algorithm to compute the whole hierarchy.

Apart when otherwise mentionned, and to the best of the author’s knowledge,
all the properties and theorems formally stated in this paper are new. This paper
is an extended version of [4].

1 Related works

1.1 Hierarchical clustering

From its beginning in image processing, hierarchical segmentation has been
thought of as a particular instance of hierachical classification [5]. One of the
fundamental theorems for hierarchical clustering states that there exists a one-
to-one correspondence between the set of indexed hierarchical classification and
a particular subset of dissimilarity measures called ultrametric distances; This
theorem is generally attributed to Johnson [6], Jardine et al. [7] and Benzécri [5].
Since then, numerous generalisations of that bijection theorem have been pro-
posed (see [2] for a recent review).

Theorem 13 (see below) is an extension to hierarchical edge-segmentation
of this fundamental hierachical clustering theorem. Note that the direction of
this extension is different from what is done classically in hierarchical clustering.
For example, E. Diday [8] looks for proper dissimilarities that are compatible
with the underlying lattice. An ultrametric watershed F is not a proper dis-
similarity, i.e. F (x, y) = 0 does not imply that x = y (see section 4). But F
is an ultrametric distance (and thus a proper dissimilarity) on the set of con-
nected components of {(x, y)|F (x, y) = 0}, those connected components being
the regions of a segmentation.

Another point of view on our extension is the following: some authors as-
similate classification and segmentation. We advocate that there exists a fun-



damental difference: in classification, we work on the complete graph, i.e. the
underlying connectivity of the image (like the four-connectivity) is not used,
and some points can be put in the same class because for example, their coor-
dinates are correlated in some way with their color; thus a class is not always
connected for the underlying graph. In the framework of edge-segmentation, any
region of any level of a hierarchy of edge-segmentations is connected for the
underlying graph. In other words, our approach yields a constrained classifica-
tion, the constraint being the four-connectivity of the classes, or more generally
any connection defining a graph (for the notion of connection and its links with
segmentation, see [9, 10].)

1.2 Hierarchical segmentation

There exist many methods for building a hierachical segmentation [11], which can
be divided in three classes: bottom-up , top-down or split-and-merge. A recent
review of some of those approaches can be found in [3]. A useful representation
of hierarchical segmentations was introduced in [12] under the name of saliency
map. This representation has been used (under several names) by several authors,
for example for visualisation purposes [1] or for comparing hierarchies [13].

In this paper, we show that any saliency map is an ultrametric watershed,
and conversely.

1.3 Watersheds

For bottom-up approaches, a generic way to build a hierarchical segmenta-
tion is to start from an initial segmentation and progressively merge regions
together [14]. Often, this initial segmentation is obtained through a water-
shed [12, 15, 16]. See [17] for a recent review of these notions in the context
of mathematical morphology.

Among many others [18], topological watershed [19] is an original approach
to watersheding that modifies a map (e.g., a grayscale image) while preserving
the connectivity of each lower cross-section. It as been proved [19, 20] that this
approach is the only one that preserves altitudes of the passes (named connec-
tion values in this paper) between regions of the segmentation. Pass altitudes
are fundamental for hierarchical schemes [12]. On the other hand, topological
watersheds may be thick. A study of the properties of different kinds of graphs
with respect to the thinness of watersheds can be found in [21, 22]. An useful
framework is that of edge-weighted graphs, where watersheds are de facto thin
(i.e. of thickness 1); furthermore, in that framework, a subclass of topological
watersheds satisfies both the drop of water principle and a property of global
optimality [23]. This subclass of topological watersheds can be seen as the limit,
when the power of the weights tends to infinity for some specific energy function,
of classical algorithms like graph cuts or random walkers [24].

In this paper, we translate topological watersheds from the framework of
vertice-weigthed-graphs to the one of edge-weighted graphs, and we identify



ultrametric watersheds, a subclass of topological watersheds that is convenient
for hierarchical edge-segmentation.

2 Segmentation on edges

This paper is settled in the framework of edge-weighted graphs. Following the
notations of [25], we present some basic definitions to handle such kind of graphs.

2.1 Basic notions

We define a graph as a pair X = (V,E) where V is a finite set and E is composed
of unordered pairs of V , i.e., E is a subset of {{x, y} ⊆ V | x 6= y}. We denote
by |V | the cardinal of V , i.e, the number of elements of V . Each element of V
is called a vertex or a point (of X), and each element of E is called an edge (of
X). If V 6= ∅, we say that X is non-empty.
As several graphs are considered in this paper, whenever this is necessary, we
denote by V (X) and by E(X) the vertex and edge set of a graph X.
A graph X is said complete if E = V (X)× V (X).
Let X be a graph. If u = {x, y} is an edge of X, we say that x and y are adjacent
(for X). Let π = 〈x0, . . . , x`〉 be an ordered sequence of vertices of X, π is a
path from x0 to x` in X (or in V ) if for any i ∈ [1, `], xi is adjacent to xi−1. In
this case, we say that x0 and x` are linked for X. We say that X is connected
if any two vertices of X are linked for X.
Let X and Y be two graphs. If V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X), we say
that Y is a subgraph of X and we write Y ⊆ X. We say that Y is a connected
component of X, or simply a component of X, if Y is a connected subgraph of X
which is maximal for this property, i.e., for any connected graph Z, Y ⊆ Z ⊆ X
implies Z = Y .
Let X be a graph, and let S ⊆ E(X). The graph induced by S is the graph whose
edge set is S and whose vertex set is made of all points that belong to an edge
in S, i.e., ({x ∈ V (X) | ∃u ∈ S, x ∈ u}, S).

Important remark. Throughout this paper G = (V,E) denotes a connected
graph, and the letter V (resp. E) will always refer to the vertex set (resp. the
edge set) of G. We will also assume that E 6= ∅.
Let S ⊂ E. In the following, when no confusion may occur, the graph induced
by S is also denoted by S.

Typically, in applications to image segmentation, V is the set of picture
elements (pixels) and E is any of the usual adjacency relations, e.g., the 4- or
8-adjacency in 2D [26].

If S ⊂ E, we denote by S the complementary set of S in E, i.e., S = E \ S.

2.2 Edge-segmentation

A deep insight on our work is that we are working with edges and not with
points: the minimal unit which we want to modify is an edge. Indeed, what we



need is a discrete space in which we can draw the border of a segmentation,
so that we can represent that segmentation by its border; in other words, we
want to be able to obtain the regions from their borders, and conversely. In that
context, a desirable property is that the regions of the segmentation are the
connected components of the complement of the border.

As illustrated in Fig. 2.b, this is not possible to achieve with the classical
definition of a point-cut. Indeed, recall that a partition of V is a collection (Vi)
of non-empty subsets of V such that any element of V is exactly in one of these
subsets, and that a point-cut is the set of edges crossing a partition. Even if we
add the hypothesis that any (Vi, (Vi × Vi) ∩ E) is a connected graph, a Vi can
be reduced to an isolated vertice, as the circled grey-point of Fig. 2.b. In that
case, the complement of the point-cut, being a set of edges, does not contain
that isolated vertice. The correct space to work with is the one of edges, and
this motivates the following definitions.

Definition 1 A set C ⊂ E is an (edge-)cut (of G) if each edge of C is adjacent
to two different nonempty connected components of C. A graph S is called an
(edge-)segmentation (of G) if E(S) is a cut. Any connected component of a
segmentation S is called a region (of S).

(a) (b) (c)

Fig. 2. Illustration of edge-segmentation and edge-cut. (a) A graph X. (b) A subgraph
of X which is not a edge-segmentation of X: the circled grey-point is isolated, and if the
point-cut D is the set of dotted-lines edges, D contains only two connected components,
instead of the expected three (see text). (c) An edge-segmentation of X; the set C of
dotted-lines edges is the associated edge-cut of X.

As mentioned above, the previous definitions of cut and segmentation (il-
lustrated on Fig. 2.c) are not the usual ones. One can remark the complement
of the complement of a cut is the cut itself, and that any segmentation gives
a partition, the converse being false. In particular, Prop. 2.i below states that
there is no isolated point in an edge-segmentation. If we need an isolated point
x, it is always possible to replace x with an edge {x′, y′}. An application of the



framework of hierarchical edge-segmentation to constrained connectivity (where
isolated points are present) is described in section 7.

It is interesting to state the definition of a segmentation from the point of
view of vertices of the graph. A graph X is said to be spanning (for V ) if
V (X) = V . We denote by φ the map that associates, to any X ⊂ G, the graph
φ(X) = {V (X), {{x, y} ∈ E|x ∈ V (X), y ∈ V (X)}}. We observe that φ(X) is
maximal among all subgraphs of G that are spanning for V (X), it is thus a
closing on the lattice of subgraphs of G [27]. We call φ the edge-closing.

Property 2 A graph S ⊆ G = (V,E) is a segmentation of G if and only if

(i) The graph induced by E(S) is S;
(ii) S is spanning for V ;
(iii) for any connected component X of S, X = φ(X).

Proof. Let S be a segmentation of G. Then S is a cut, in other word, any edge
v = {x, y} 6∈ E(S) is such that x an y are in two different connected components
of S. As G is connected, that implies that S is spanning for V . Moreover, E(S)
is the set of all edges of S, and as S is spanning for G, the graph induced by
E(S) is (V,E(S)) = S. Let X be a connected component of S, suppose that
there exists v = {x, y} ∈ E such that x and y belong to X and v 6∈ E(X). But
then v 6∈ E(S) and thus x and y are in two different connected components of
S, a contradiction.

Conversely, let S be a graph satisfying (i), (ii) and (iii) and let v = {x, y} 6∈
E(S). As, by (ii), S is spanning for V , assertion (iii) implies that x and y are in
two different connected components of E(S). Assertion (i) implies that there is
no isolated points in S, thus S is a cut and thus S is a segmentation of G.ut

2.3 Binary watershed

Let X be a subgraph of G. We note X + u = (V (X) ∪ u, E(X) ∪ {u}). In other
words, X + u is the graph whose vertice-set is composed by the points of V (X)
and the points of u, and whose edge-set is composed by the edges of E(X) and
u. An edge u ∈ E(X) is said to be W-simple (for X) (see [19]) if X has the same
number of connected components as X + u.
A subgraph X ′ of G is a thickening (of X) if:

– X ′ = X, or if
– there exists a graph X ′′ which is a thickening of X and there exists an edge

u W-simple for X ′′ and X ′ = X ′′ + u.

A subgraph X of G such that there does not exist a W-simple edge for X is
called a binary watershed (of G).

The following property is a consequence of the definitions of segmentation
and binary watershed.

Property 3 A graph X ⊆ G = (V,E) is a segmentation of G if and only if X
is a binary watershed of G and if X is induced by E(X).



Proof. If X is a segmentation, then E(X) is a cut; let u ∈ E(X), u is adjacent
to two different non-empty connected components of E(X), in other word u is
not W-simple for X. Thus any segmentation is a binary watershed.

Conversely, let X be a binary watershed, any u 6∈ E(X) is not W-simple
for X (and thus u is adjacent to two different connected components of X). If
furthermore X is induced by E(X) then E(X) is a cut.ut.

Thus, starting from a set of edges X, a segmentation is obtained by iter-
ative thickening steps until idempotence. The next section extends the binary
watershed approach to edge-weighted graphs.

3 Topological watershed

3.1 Edge-weighted graphs

We denote by F the set of all maps from E to R+ Given any F ∈ F , the
positive numbers F (u) for u ∈ E are called the weights and the pair (G, F )
an edge-weighted graph. Whenever no confusion can occur, we will denote the
edge-weighted graph (G, F ) by F .

For applications to image segmentation, we take for weight F (u), where u =
{x, y} is an edge between two pixels x and y, a dissimilarity measure between x
and y (e.g., F (u) equals the absolute difference of intensity between x and y;
see [28] for a more complete discussion on different ways to set the map F for
image segmentation). Thus, we suppose that the salient contours are located on
the highest edges of (G, F ).

Let λ ∈ R+ and F ∈ F , we define F [λ] = {v ∈ E | F (v) ≤ λ}. The graph
(induced by) F [λ] is called a (cross)-section of F . A connected component of a
section F [λ] is called a component of F (at level λ).

We define C(F ) as the set composed of all the pairs [λ, C], where λ ∈ R+ and
C is a component of the graph F [λ]. We call altitude of [λ, C] the number λ. We
note that one can reconstruct F from C(F ); more precisely, we have:

F (v) = min{λ | [λ, C] ∈ C(F ), v ∈ E(C)}

For any component C of F , we set h(C) = min{λ | [λ, C] ∈ C(F )}. We define
C?(F ) as the set composed by all [h(C), C] where C is a component of F . The
set C?(F ), called the component tree of F [29,30], is a finite subset of C(F ) that
is widely used in practice for image filtering. Note that the previous equation
also holds for C?(F ):

F (v) = min{λ | [λ, C] ∈ C?(F ), v ∈ E(C)}

We will make use of the component tree in the proof of Pr. 12.
A (regional) minimum of F is a component X of the graph F [λ] such that

for all λ1 < λ, F [λ1]∩E(X) = ∅. We remark that a minimum of F is a subgraph
of G and not a subset of vertices of G; we also remark that any minimum X of
F is such that |V (X)| > 1.



We denote byM(F ) the graph whose vertex set and edge set are, respectively,
the union of the vertex sets and edge sets of all minima of F . In Fig. 3, M(F )
is in bold. Note that M(F ) is induced by E(M(F )). As a convenient notation,
and when no confusion can occur, we will sometimes write X ∈M(F ) if X is a
connected component of M(F ).

3.2 Topological watersheds on edge-weighted graphs

In that section, we extend the definition of topological watershed [19] to edge-
weighted graphs, and we give an original characterization of topological water-
sheds in that framework (Th. 7).

Let F ∈ F . An edge u such that F (u) = λ is said to be W-destructible (for
F ) with lowest value λ0 if there exists λ0 such that, for all λ1, λ0 < λ1 ≤ λ, u is
W-simple for F [λ1] and if u is not W-simple for F [λ0].

A topological watershed (on G) is a map that contains no W-destructible
edges.

A map F ′ is a topological thinning (of F ) if:

– F ′ = F , or if
– there exists a map F ′′ which is a topological thinning of F and there exists an

edge u W-destructible for F ′′ with lowest value λ such that ∀v 6= u, F ′(v) =
F ′′(v) and F ′(v) = λ0, with λ ≤ λ0 < F ′′(v).
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Fig. 3. Illustration of topological watershed. (a) An edge-weighted graph F .
(b) A topological watershed of F . The minima of (a) are ({m, i}), ({p, l}),
({g, h}, {c, d}, {g, c}, {h, d}) and are in bold in (a).

An illustration of a topological watershed can be found in Fig. 3.



The connection value between x ∈ V and y ∈ V is the number

F (x, y) = min{λ | [λ, C] ∈ C(F ), x ∈ V (C), y ∈ V (C)} (1)

In other words, F (x, y) is the altitude of the lowest element [λ, C] of C(F ) such
that x and y belong to C (rule of the least common ancestor).

The connection value is a practical way to know if an edge is W-destructible.
The following property is a translation of prop. 2 in [31] to the framework of
edge-weighted graphs.

Property 4 (Prop. 2 in [31]) Let F ∈ F . An edge v = {x, y} ∈ E is W-
destructible for F with lowest value λ if and only if λ = F (x, y) < F (v).

Two points x and y are separated (for F ) if F (x, y) > max{λ1, λ2}, where
λ1 (resp. λ2) is the altitude of the lowest element [λ1, c1] (resp. [λ2, c2]) of C(F )
such that x ∈ c1 (resp. y ∈ c2). The points x and y are λ-separated (for F ) if
they are separated and λ = F (x, y).

The map F ′ is a separation of F if, whenever two points are λ-separated for
F , they are λ-separated for F ′.

If X and Y are two subgraphs of G, we set F (X, Y ) = min{F (x, y) | x ∈
X, y ∈ Y }.

Theorem 5 (Restriction to minima [19]). Let F ′ ≤ F be two elements of
F . The map F ′ is a separation of F if and only if, for all distinct minima X
and Y of M(F ), we have F ′(X, Y ) = F (X, Y ).

A graph X is flat (for F ) if for all u, v ∈ E(X), F (u) = F (v). If X is flat, the
altitude of X is the number F (X) such that F (X) = F (v) for any v ∈ E(X).

We say that F ′ is a strong separation of F if F ′ is a separation of F and
if, for each X ′ ∈ M(F ′), there exists X ∈ M(F ) such that X ⊆ X ′ and
F (X) = F (X ′).

Theorem 6 (strong separation [19]). Let F and F ′ in F with F ′ ≤ F . Then
F ′ is a topological thinning of F if and only if F ′ is a strong separation of F .

In other words, topological thinnings are the only way to obtain a watershed
that preserves connection values.

In the framework of edge-weighted graphs, topological watersheds allows for
a simple characterization.

Theorem 7. A map F is a topological watershed if and only if:

(i) M(F ) is a segmentation of G;
(ii) for any edge v = {x, y}, if there exist X and Y in M(F ), X 6= Y , such that

x ∈ V (X) and y ∈ V (Y ), then F (v) = F (X, Y ).

Proof. Let F be a topological watershed. Thus there does not exist any edge
W-destructible for F .



– Suppose that M(F ) is not a segmentation of G. That means that there
exists an edge u = {x, y} ∈ E(M(F )) such that x and y belongs to the
same connected component X of M(F ). That implies that F (u) > F (X) =
F (x, y). By Pr. 4, that implies that the edge u is W-destructible for F , a
contradiction. Thus M(F ) is a segmentation of G.

– As F is a topological watershed, we have by Pr. 4 that for any v = {x, y} ∈ E,
F (x, y) = F (v). In particular, if there exist X and Y in M(F ), X 6= Y , such
that x ∈ V (X) and y ∈ V (Y ), then F (v) = F (X, Y ).

Conversely, suppose that F satisfies (i) and (ii). By Pr. 4, for any edge v =
{x, y} ∈ E(M(F )), F (v) = F (x, y) = F (X), and thus M(F ) does not contain
any edge W-destructible for F . As, by (i), M(F ) is a segmentation, any edge
v 6∈ E(M(F )) satisfies (ii). By Pr. 4, such an edge v is not W-destructible. Thus
F contains no W-destructible edge and is a topological watershed. ut

Note that if F is a topological watershed, then for any edge v = {x, y} such that
there exists X ∈M(F ) with x ∈ V (X) and y ∈ V (X), we have F (v) = F (X).

4 Hierarchies and ultrametric distances

Let Ω be a finite set. A hierarchy H on Ω is a set of parts of Ω such that

(i) Ω ∈ H
(ii) for every ω ∈ Ω, {ω} ∈ H
(iii) for each pair (h, h′) ∈ H2, h ∩ h′ 6= ∅ =⇒ h ⊂ h′ or h′ ⊂ h.

The (iii) can be expressed by saying that two elements of a hierarchy are either
disjoint or nested.

An indexed hierarchy on Ω is a pair (H,µ), where H denotes a given hierarchy
on Ω and µ is a positive function, defined on H and satisfying the following
conditions:

(i) µ(h) = 0 if and only if h is reduced to a singleton of Ω;
(ii) if h ⊂ h′, then µ(h) < µ(h′).

Hierarchy are usually represented using a special type of tree called dendro-
grams (Fig. 4). The leafs of the tree are the data that are to be classified, while
the branching point (the junctions) are the agglomeration of all the data that are
below that point. In that sense, one can see that, for a given h, µ(h) corresponds
to the “level” of aggregation, where the elements of h have been aggregated for
the first time.

Recall that a dissimilarity on Ω is a map d from the Cartesian product Ω×Ω
to the set R of real numbers such that: d(ω1, ω2) = d(ω2, ω1), d(ω1, ω1) = 0 and
d(ω1, ω2) ≥ 0 for all ω1, ω2, ω3 ∈ Ω. The dissimilarity d is said to be proper
whenever d(ω1, ω2) = 0 implies ω1 = ω2.

A distance d (on Ω) is a proper dissimilarity that obeys the triangular in-
equality d(ω1, ω2) ≤ d(ω1, ω3) + d(ω3, ω2) where ω1, ω2 and ω3 are any three
points of the space.
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Fig. 4. Hierarchical trees. We have λ1 < λ3 < λ4 and λ2 < λ4.

The ultrametric inequality [32] is stronger than the triangular inequality.
An ultrametric distance (on Ω) is a proper dissimilarity such that d(ω1, ω2) ≤
max(d(ω1, ω3), d(ω2, ω3)) for all ω1, ω2, ω3 ∈ Ω.

Note that any given partition (Ωi) of the set Ω induces a large number of
trivial ultrametric distances: d(ω1, ω1) = 0, d(ω1, ω2) = 1 if ω1 ∈ Ωi, ω2 ∈ Ωj , i 6=
j, and d(ω1, ω2) = a if i = j, 0 < a < 1. The general connection between indexed
hierarchies and ultrametric distances goes back to Benzécri [5] and Johnson [6].
They proved there is a bijection between indexed hierarchies and ultrametric
distances, both defined on the same set. Indeed, associated with each indexed
hierarchy (H,µ) on Ω is the following ultrametric distance:

d(ω1, ω2) = min{µ(h) | h ∈ H,ω1 ∈ h, ω2 ∈ h}. (2)

In other words, the distance d(ω1, ω2) between two elements ω1 and ω2 in Ω is
given by the smallest element in H which contains both ω1 and ω2. Conversely,
each ultrametric distance d is associated with one and only one indexed hierarchy.

Observe the similarity between Eq. 2 and Eq. 1. Indeed, connection value is
an ultrametric distance on V whenever F > 0. More precisely, we can state the
following property, whose proof is a simple consequence of Eq.2 and Eq. 1.

Property 8 Let F ∈ F . Then F (X, Y ) is an ultrametric distance on M(F ). If
furthemore, F > 0, then F (x, y) is an ultrametric distance on V .

Let Ψ be the application that associates to any F ∈ F the map Ψ(F ) such
that for any edge {x, y} ∈ E, Ψ(F )({x, y}) = F (x, y). It is straightforward to see
that Ψ(F ) ≤ F , that Ψ(Ψ(F )) = Ψ(F ) and that if F ′ ≤ F , Ψ(F ′) ≤ Ψ(F ). Thus
Ψ is an opening on the lattice (F ,≤) [33]. We observe that the subset of strictly
positive maps that are defined on the complete graph (V, V × V ) and that are
open with respect to Ψ is the set of ultrametric distances on V . The mapping Ψ
is known under several names, including “subdominant ultrametric” and “ultra-
metric opening”. It is well known that Ψ is associated to the simplest method for
hierarchical classification called single linkage clustering [7, 34], closely related
to Kruskal’s algorithm [35] for computing a minimum spanning tree.



Thanks to Th. 7, we observe that if F is a topological watershed, then Ψ(F ) =
F . However, an ultrametric distance d may have plateaus, and thus the weighted
complete graph (V, V ×V, d) is not always a topological watershed. Nevertheless,
those results underline that topological watersheds are related to hierarchical
classification, but not yet to hierarchical edge-segmentation; the study of such
relations is the subject of the rest of the paper.

5 Hierarchical edge-segmentations, saliency and
ultrametric watersheds

Informally, a hierarchical segmentation is a hierarchy of connected regions. How-
ever, in our framework, if a segmentation is a partition, the converse is not true
(see Pr. 2); thus, as the union of two disjoint connected subgraphs of G is not a
connected subgraph of G, the formal definition is slightly more involved.

A hierarchical (edge-)segmentation (on G) is an indexed hierarchy (H,µ) on
the set of regions of a segmentation S of G, such that for any h ∈ H, φ(∪X∈hX)
is connected (φ being the edge-closing defined in section 2).

For any λ ≥ 0, we denote by H[λ] the graph induced by {φ(∪X∈hX)|h ∈
H,µ(h) ≤ λ}. The following property is an easy consequence of the definition of
a hierarchical segmentation.

Property 9 Let (H,µ) be a hierarchical segmentation. Then for any λ ≥ 0, the
graph H[λ] is a segmentation of G.

Proof. Let (H,µ) be a hierarchical segmentation, and let λ ≥ 0. Suppose that
H[λ] is not a segmentation, i.e. that H[λ] is not a cut. Then there exist a
connected component X of H[λ] and v = {x, y} ∈ H[λ] such that x ∈ X and
y ∈ X. That implies that φ(X) 6= X, a contradiction with the definition of a
hierachical segmentation. ut

Prop. 8 implies that the connection value defines a hierarchy on the set
of minima of F . If F is a topological watershed, then by Th. 7, M(F ) is a
segmentation of G, and thus from any topological watershed, one can infer a
hierachical segmentation. However, F [λ] is not always a segmentation: if there
exists a minimum X of F such that F (X) = λ0 > 0, for any λ1 < λ0, F [λ1]
contains at least two connected components X1 and X2 such that |V (X1)| =
|V (X2)| = 1. Note that the value of F on the minima of F is not related to the
position of the divide nor to the associated hierarchy of minima/segmentations.
This leads us to introduce the following definition.

Definition 10 A map F ∈ F is an ultrametric watershed if F is a topological
watershed, and if furthemore, for any X ∈M(F ), F (X) = 0.

Definition 10 directly yields to the nice following property, illustrated in Fig. 5,
that states that any level of an ultrametric watershed is a segmentation and
conversely.



Property 11 A map F is an ultrametric watershed if and only if for all λ ≥ 0,
F [λ] is a segmentation of G.

Proof. Suppose that F is an ultrametric watershed, then it is a topological wa-
tershed, and by Th. 7.(i), M(F ) is a segmentation of G. But as the value of F
on its minima is null, then any cross-section of F is a segmentation of G.

Conversely, if for any λ ≥ 0, F [λ] is a segmentation of G, then F contains
no W-destructible edge for F . Indeed, suppose that there exists an edge v W-
destructible for F , let λ = F (v), then v is W-simple for F [λ]. In other words,
adding v to F [λ] does not change the number of connected components of F [λ].
This is a contradiction with the definition of a segmentation. Hence F is a
topological watershed. Furthermore, as F [λ] is a segmentation for any λ ≥ 0,
the value of F on its minima is null, hence F is an ultrametric watershed. ut
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Fig. 5. An example of an ultrametric watershed F and a cross-section of F .

By definition of a hierarchy, two elements of H are either disjoint or nested.
If furthermore (H,µ) is a hierarchical segmentation, the graphs E(H[λ]) can be
stacked to form a map. We call saliency map [12] the result of such a stack-
ing, i.e. a saliency map is a map F such that there exists (H,µ) a hierarchical
segmentation with F (v) = min{λ|v ∈ E(H[λ])}.

Property 12 A map F is a saliency map if and only if F is an ultrametric
watershed.

Proof. If F is a saliency map, then there exists (H,µ) a hierarchical segmentation
such that F (v) = min{λ | v ∈ E(H(λ))}. But F [λ] = {v | F (v) ≤ λ} =
{v | min{λ | v ∈ E(H[λ])} ≤ λ} = H[λ] and thus by Pr. 9, for any λ ≥ 0, F [λ]
is a segmentation. By Pr. 11, F is an ultrametric watershed.



Conversely, let F be an ultrametric watershed, and let C?(F ) be the compo-
nent tree of F . We build the pair (H,µ) in the following way: h ∈ H if and only
if there exists [λ, C] ∈ C?(F ) such that h = {Xi | Xi ∈ M(F ) and Xi ⊂ C}; in
that case, we set µ(h) = λ.

Then (H,µ) is a hierarchical edge-segmentation. Indeed, let h and h′ two
elements of H such that there exists [λ, X] and [λ′, Y ] in C?(F ) with h =
{X0, . . . , Xp | Xi ∈ M(F ) and Xi ⊂ X} and with h′ = {Y0, . . . , Yn | Yi ∈
M(F ) and Yi ⊂ Y }.

– by Th. 7, M(F ) is a segmentation,
– we set λmax = max{F (v) | v ∈ E}, it easy to see that [λmax, (V,E)] ∈ C?(F ),

thus {∪X∈M(F ){X}} ∈ H;
– any minimum X of F is such that [0, X] belongs to C?(F ), thus {X} ∈ H;
– furthermore, h and h′ are either disjoint or nested:

• either disjoint: suppose that X ∩ Y = ∅, in that case h and h′ are also
disjoint;

• or nested: suppose that X ∩ Y 6= ∅, then as X and Y are two connected
components of the cross-sections of F , either X ⊂ Y or Y ⊂ X; suppose
that X ⊂ Y ; by reordering the Xi and the Yi, that means that Xi = Yi

for i = 0, . . . , p, p < n. In other words, h ⊂ h′.
– by construction, µ(h) = 0 if and only if there exists X ∈ M(F ) such that

h = {X};
– If h ⊂ h′, then µ(h) < µ(h′), because in that case, X ⊂ Y and thus λ < λ′.

Thus (H,µ) is a indexed hierarchy on M(F ).
Furthermore, φ(∪Xi∈hXi) is connected: more precisely, as M(F ) is a seg-

mentation, and as X is a connected component of the cross-sections of F ,
φ(∪Xi∈hXi) = X. Thus (H,µ) is a hierachical edge segmentation. ut

The following theorem, a corrolary of Prop. 12, states the equivalence between
hierachical segmentations and ultrametric watersheds. It is the main result of
this paper.

Theorem 13. There exists a bijection between the set of hierachical edge-segmen-
tations on G and the set of ultrametric watersheds on G.

Proof. By Pr. 12, any ultrametric watershed is a saliency map, thus for any
ultrametric watershed, there exists an associated hierachical edge-segmentation.

Conversely, for any hierarchical edge-segmentation, there exists a unique
saliency map, thus by Pr. 12, a unique ultrametric watershed. ut

Th. 13 states that any hierarchical segmentation can be represented by an ul-
trametric watershed. Such a representation can easily be built by stacking the
border of the regions of the hierarchy (see Pr. 9 and 12, but also [1,12,13]). More
interestingly, Th. 13 also states that any ultrametric watershed yields a hierar-
chical segmentation. As the definition of topological watershed is constructive,
this is an incentive to searching for algorithmic schemes that directly compute



the whole hierarchy. An exemple of such an application of Th. 13 is developped
in section 7.

As there exists a one-to-one correspondence between the set of indexed hi-
erarchies and the set of ultrametric distances, it is interesting to search if there
exists a similar property for the set of hierarchical segmentations. Let d be the
ultrametric distance associated to a hierarchical segmentation (H,µ). We call
ultrametric contour map (associated to (H,µ)) the map dE such that:

1. for any edge v ∈ E(H[0]), then dE(v) = 0;
2. for any edge v = {x, y} ∈ E(H[0]), dE(v) = d(X, Y ) where X (resp. Y ) is

the connected component of H[0] that contains x (resp. y).

Property 14 A map F is an ultrametric watershed if and only if F is the
ultrametric contour map associated to a hierarchical segmentation.

Proof. Let F be an ultrametric watershed. By Pr. 8, F (X, Y ) is an ultrametric
distance onM(F ). By Pr. 11, F is a saliency map, hence there exists a hierachical
segmentation (H,µ) such that F (v) = min{λ | v ∈ E(H[λ])}. In particular,

1. for any edge v ∈ E(H[0]), then F (v) = 0;
2. for any edge v = {x, y} ∈ E(H[0]), F (v) = F (X, Y ) where X (resp. Y ) is

the connected component of H[0] that contains x (resp. y).

Hence F is an ultrametric contour map associated to a hierarchical segmentation.
Conversely, let dE be an ultrametric contour map associated to a hierarchical

segmentation (H,µ). Then by Th. 7, dE is a topological watershed. Indeed, as
H is a hierarchical segmentation, H[0] = M(dE) is a segmentation of G, and
furthermore for any edge v = {x, y}, if there exist X and Y in M(dE), X 6= Y ,
such that x ∈ V (X) and y ∈ V (Y ), then dE(v) = d(X, Y ) = dE(X, Y ).

Moreover, for any v ∈M(dE), dE(v) = 0, hence dE is an ultrametric water-
shed. ut

6 Representations of hierarchical edge-segmentations in
Khalimski grids

As we mentionned in section 2.2, one of the motivations of this work is to be
able to imbed the hierarchical segmentation in a discrete space in a way that can
be represented. Until now, we have used the classical representation of a graph
for all of our examples.

For the purpose of visualisation, it is enough to represent the image by a grid
of double resolution. For example, with the usual four connectivity in 2D, each
pixel will be the center of a 3x3 neighborhood, and if two pixels share an edge,
the two corresponding neighborhoods will share 3 elements corresponding to that
edge. The representation of an ultrametric watershed with double resolution can
be seen in Fig. 6.a.

A convenient interpretation of the doubling of the resolution can be given
in the framework of cubical complexes, that have been popularized in computer
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Fig. 6. Two possible representations of the ultrametric watershed F of Fig. 5.a.

vision by E. Khalimski [36], but can be found earlier in the litterature, originally
in the work of P.S. Alexandroff [37,38].

Intuitively, a cubical complexe can be seen as a set of elements of various
dimensions (cubes, squares, segments and points) with specific rules between
those elements. The traditional vision of a numerical image as being composed
of pixels (elementary squares) in 2D or voxels (elementary cubes) in 3D leads to
a natural link between numerical images and complexes. The representation of
an ultrametric watershed in the Khalimski grid can be seen in Fig. 6.b.

The framework of complexes is useful in the study of topological proper-
ties [39]. It is indeed possible to provide a formal treatment of watersheds in
complexes, which we will not do in this paper. The interested reader can have a
look at [40].

7 Ultrametric watershed for constrained connectivity

Let us illustrate the usefulness of the proposed framework by providing an orig-
inal way of revisiting constrained connectivity hierarchical segmentations [3],
which leads to efficient algorithms. This section is meant as an illustration of our
framework, and, although it is self-sufficient, technical details can be somewhat
difficult to grasp for someone not familiar with the watershed-based segmen-
tation framework of mathematical morphology [17]. We plan to provide more
information in an extended version of that section that will appear in a journal
paper.

In this section, we propose to compute an ultrametric watershed that cor-
responds to the constrained connectivity hierarchy of a given image. We show
that, in the framework of edge-weighted segmentations, constrained connectivity
can be thought as a classical morphological scheme, that consists of:



– computing a gradient;
– filtering this gradient by attribute filtering;
– computing a watershed of the filtered gradient.

We first give the formal definition of constrained connectivity, and then we move
on to using ultrametric watersheds for computing such a hierarchy.

7.1 Constrained connectivity

This section is a reminder of P. Soille’s approach [3], using the same notations.
Let f be an application from V to R, i.e. an image with values on the points.

For any set of points U ⊆ V , we set

Rf (U) = sup{f(x)− f(y)|x, y ∈ U}.

The number Rf (U) is called the range of U (for f).
For any x ∈ V , and for any α ≥ 0, define [41] the α-connected component

α-CC(x) as the set:

α-CC(x) = {x} ∪ {y ∈ V | there exists a path π = {x0, . . . , xn}, n > 0,

such that Rf ({xi, xi+1}) ≤ α, for all 0 ≤ i < n}

An essential property of the α-connected components of a point x is that
they form an ordered sequence (i.e a hierarchy) when increasing the value of α:

α-CC(x) ⊆ β-CC(x)

whenever β ≥ α.
We now define the (α, ω)-connected component of an arbitrary point x as the

largest α-connected component of x whose range is lower that ω; more precisely,

(α, ω)-CC(x) = sup{β-CC(x) | β ≤ α and
Rf (β-CC(x)) ≤ ω} (3)

The (α, ω)-CCs also define a hierarchy, that is called a constrained connec-
tivity hierarchy. We have:

(α, ω)-CC(x) ⊆ (α′, ω′)-CC(x)

whenever α′ ≥ α and ∀ω′ ≥ ω. In practice [3], we are interested in this hierarchy
for α = ω, i.e., for any x ∈ V and any λ ≥ 0, we are looking for (λ, λ)-CC(x).

7.2 Ultrametric watershed for constrained connectivity

In that section, we show how to build a weighted graph on which the ultrametric
watershed corresponding to the hierarchy of constrained connectivity can be
computed. Intuitively, this weighted graph can be seen as the gradient of the



original image. We compute an ultrametric watershed for the hierarchy of α-
connected components. We filter that watershed to obtain the family of (α, ω)-
connected components. We then show how to directly compute the ultrametric
watershed corresponding to the hierarchy of (α, ω)-connected components.

Constrained connectivity is a hierachy of flat zones of f , in the sense where
the 0-connected components of f are the zones of f where the intensity of f
does not change. In a continuous world, such zones would be the ones where the
gradient is null, i.e. ∇f = 0. However, the space we are working with is discrete,
and a flat zone of f can consist in a single point. In general, it is not possible to
compute a gradient on the points or on the edges such that this gradient is null
on the flat zones. To compute a gradient on the edges such that the gradient is
null on the flat zones, we need to “double” the graph, for example we can do
that by doubling the number of points of V and adding one edge between each
new point and the old one (see Fig. 7).
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(b)

Fig. 7. Doubling the graph. (a) Original graph with weights f on the vertices. (b) Dou-
ble graph, with weigths f on the vertices and the gradient F on the edges (see text).

More precisely, if we denote the points of V by V = {x0, . . . , xn}, we set
V ′ = {x′0, . . . , x′n} (with V ∩ V ′ = ∅), and E′ = {{xi, x

′
i} | 0 ≤ i ≤ n}. We then

set V1 = V ∪V ′ and E1 = E ∪E′. By construction, as G = (V,E) is a connected
graph, the graph G1 = (V1, E1) is a connected graph.We also extend f to V ′, by
setting, for any x′ ∈ V ′, f(x′) = f(x), where {x, x′} ∈ E′.

Let (V1, E1, F ) be the weighted graph obtained from f by setting, for any
{x, y} ∈ E1, F ({x, y}) = |f(x)− f(y)|. The map F can be seen as the “natural
gradient” of f [42]. It is easy to see that the flat zones of f , i.e. the 0-connected
components of f are (in bijection with) the connected components of the set
{v = {x, y} ∈ E1 | F ({x, y}) = 0}.

Let W 1 be a topological watershed of F . From Th. 7 and Eq. 1, if W 1({x, y}) =
λ, there exists a path π = {x0 = x, . . . , xn = y} linking x to y such that
the altitude of any edge along π is below λ, i.e. we have, for any 0 ≤ i < n,
F ({xi, xi+1}) = |f(xi)−f(xi+1)| ≤ λ. The following property, the proof of which



is left to the reader, states that the hierarchy of α-connected components is given
by W 1.

Property 15 We have

– W 1 is an ultrametric watershed;
– W 1 is uniquely defined (if W ′ is a topological watershed of F , then W ′ =

W 1);
– let λ ≥ 0 and let X be a connected component of the cross-section W 1[λ];

then for any x ∈ V (X) \ V ′, λ-CC(x) = V (X) \ V ′.

(a) Original image (b) W 1(logarithmic grey-scale)

(c) W 2 (d) Area-filtering ultrametric watershed

Fig. 8. Soille’s (α, ω)-constrained connectivity hierarchy. (a) Original image. (b) Ul-
trametric watershed W 1 for the α-connectivity. (c) Ultrametric watershed W 2 for the
constrained connectivity. (d) Ultrametric watersheds corresponding to one of the pos-
sible hierarchies of area-filterings on W 2.

One can notice that Rf is increasing on 2V , i.e. Rf (X) ⊂ Rf (Y ) whenever
X ⊆ Y . Thus Rf is increasing on C(W 1), and by removing the connected com-
ponents of C(W 1) that are below a threshold ω for Rf , we have an attribute
filtering which is idempotent (the values on the points do not change), thus it is
a closing. More precisely, we denote by (Rλ)λ≥0) the family of maps obtained by
applying this closing on W 1 for varying λ, i.e., for any λ ≥ 0 and any {x, y} ∈ E1,



we set

Rλ({x, y}) = min{λ′ | [λ′, C] ∈ C(W 1), x ∈ V (C), y ∈ V (C), Rf (V (C)) ≥ λ}

In other words, the altitude for Rλ of the edge {x, y} is the altitude of the lowest
component of C(W 1) that contains both x and y and such that the range of that
component is greater than λ.

The family (Rλ)λ≥0 allows us to retrieve the (α, ω)-CCs of f : surprisingly,
it can be shown that any Rλ is a topological watershed, and thus M(Rλ) is a
segmentation from which it is easy to extract the (λ, λ)-connected component of
a point, as the minimum of M(Rλ) that contains that point (See Pr. 16 below
for a more formal setting).

Moreover, one can directly compute the ultrametric watershed associated to
the hierarchy of (α, ω)-constrained connectivity. We set:

W 2({x, y}) = min{Rf (V (C)) | [λ, C] ∈ C(W 1), x ∈ V (C), y ∈ V (C)} (4)

In other words, the altitude for W 2 of the edge {x, y} is the range of the lowest
component of C(W 1) that contains both x and y. One can remark that Eq. 4
corresponds to Eq. 3 for the framework of edge-segmentation.

The following property, the proof of which is left to the reader, states that
the hierarchy of (α, ω)-connected components is given by W 2.

Property 16 We have

– ∀λ ≥ 0, Rλ is a topological watershed;
– ∀λ ≥ 0, W 2[λ] = M(Rλ) ;
– W 2 is an ultrametric watershed;
– W 2 is uniquely defined;
– let λ ≥ 0 and let X be a connected component of the cross-section W 2[λ];

then for any x ∈ V (X) \ V ′, (λ, λ)-CC(x) = V (X) \ V ′.

Prop. 16, illustrated on Fig. 8.c, thus gives an efficient algorithm to compute
the hierarchy of (α, ω)-constrained connectivity. Indeed, Eq. 4 can be computed
in constant time [43] on C(W 1), which itself can be computed in quasi-linear
time [30]. Such an algorithm is much faster than the one proposed in [3], that
computes only one level of the hierarchy.

In a forthcomming paper, we will propose various data structures, includ-
ing but not limited to component tree, that allows an efficient computation of
hierarchical edge-segmentations. We will also study how to extend Prop. 16 in
order to compute any granulometry of operators (strong hierarchies in the sense
of [9]).

Visualising W 2 allows to asses some of the qualilties of the hierarchy of
constrained connectivity. One can notice in Fig. 8.c a large number of transi-
tion regions (small undersirable regions that persist in the hierarchy), and this
problem is known [44]. As W 2 is an image, a number of classical morphological
schemes (e.g., area filtering) can be used to remove those transition zones (see
Fig. 8.d for an example). Studying the usefulness of such schemes is the subject
of future research.



8 Conclusion

Fig. 9 is an illustration of the application of the framework developped in this
paper to a classical hierarchical segmentation scheme based on attribute open-
ing [12, 17, 29]. Fig. 10 shows some of the differences between applying such
scheme and applying a classical watershed-based segmentation scheme, e.g. at-
tribute opening followed by a watershed [15]. As watershed algorithms generally
place watershed lines in the middle of plateaus, the two schemes give quite dif-
ferent results.

(a) Original image (b) Ultrametric watershed (c) Cross section of (b)

Fig. 9. Example of ultrametric watershed.

(a) (b)

Fig. 10. Zoom on a comparison between two watersheds of a filtered version of the
image 9.a. Morphological filtering tends to create large plateaus, and both watersheds
(a) and (b) are possible, but only (a) is a subset of a watershed of 9.a. No hierarchical
scheme will ever give a result as (b).



It is important to note that most of the algorithms proposed in the litterature
to compute saliency maps are not correct, often because they rely on wrong con-
nection values or because they rely on thick watersheds where merging regions
is difficult. Future papers will propose novel algorithms (based on the topologi-
cal watershed algorithm [31]) to compute ultrametric watersheds, with proof of
correctness.

On a more theoretical level, this work can be pursued in several directions.

– We will study lattices of watersheds [45] and will bring to that framework
recent approaches like scale-sets [1] and other metric approaches to segmen-
tation [13]. For example, scale-sets theory considers a rather general formula-
tion of the partitioning problem which involves minimizing a two-term-based
energy, of the form λC + D, where D is a goodness-of-fit term and C is a
regularization term, and proposes an algorithm to compute the hierarchical
segmentation we obtain by varying the λ parameter. As in the case of con-
strained connectivity (see section 7 above), we can hope that the topological
watershed algorithm [31] can be used on a specific energy function to directly
obtain the hierarchy.

– Subdominant theory (mentionned at the end of section 4) links hierachical
classification and optimisation. In particular, the subdominant ultrametric
d′ of a dissimilarity d is the solution to the following optimisation problem
for p < ∞:

min{||d− d′||pp | d′ is an ultrametric distance and d′ ≤ d}

It is certainly of interest to search if topological watersheds can be solutions
of similar optimisation problems.

– Several generalisations of hierarchical clustering have been proposed in the
literature [2]. An interesting direction of research is to see how to extend in
the same way the topological watershed approach, for example for allowing
regions to overlap.

– Last, but not least, the links of hierachical edge-segmentation with connec-
tive segmentation [9] have to be studied.
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ences humaines 73 (1981) 5–37
34. Gower, J., Ross, G.: Minimum spanning tree and single linkage cluster analysis.

Appl. Stats. 18 (1969) 54–64
35. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical Society 7 (February
1956) 48–50

36. Khalimsky, E., Kopperman, R., Meyer, P.: Computer graphics and connected
topologies on finite ordered sets. Topology and its Applications 36 (1990) 1–17

37. Alexandroff, P., Hopf, H.: Topology. Springer Verlag (1937)
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