
Towards a Parallel Topological Watershed:
First Results

Joël van Neerbos1, Laurent Najman2, and Michael H.F. Wilkinson1

1Johann Bernoulli Institute, University of Groningen
joelvneerbos@gmail.com, m.h.f.wilkinson@rug.nl

2Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, A3SI, ESIEE
l.najman@esiee.fr

Abstract. In this paper we present a parallel algorithm for the topo-
logical watershed, suitable for a shared memory parallel architecture. On
a 24-core machine an average speed-up of about 11 was obtained. The
method opens up possibilities for segmentation of gigapixel images such
as found in remote sensing routinely.

1 Introduction

The watershed transformation is a popular tool for segmenting grey-scale im-
ages, introduced by S. Beucher and C. Lantuéjoul [1]. It can be used to segment
an image into regions with similar grey values. Due to ever increasing image
sizes, several parallel algorithms have become available for different watershed
paradigms [2]. In contrast, no parallel algorithms for the topological watershed [3,
4] are available. In the topological watershed framework, some of the grey-scale
information from the original image is preserved, which may be useful for fur-
ther processing, such as reconnection of corrupted contours. Also, this grey-scale
information can be used to determine the significance of watershed lines [5].

In this paper we present a parallel algorithm for the topological watershed on
shared-memory parallel machines. The algorithm is based on parallelizing each
of the stages of the sequential algorithm [6], and including a multi-pass stage
such as used in most parallel algorithms for the regular watershed [2].

We will first describe the topological watershed briefly, after which we de-
scribe the parallel algorithm. Timing results are presented in Section 4, followed
by the conclusions.

2 Topological Watersheds

The topological watershed [3, 4] was introduced to include grey level information
in the end result, in such a way that the significance of each watershed line is
preserved. Specifically, the topological watershed preserves the pass values [3, 7],
i.e. the highest altitude of the lowest path between any two minima.

The pass value of two points in the image is related to a concept of separation
of the points. The points p and q are said to be k-separated if the following
conditions apply:



(a) (b)

Fig. 1. Separation. (a) a digital grey-scale image; (b) lowest paths between three pairs
of pixels.

– There exists a path from p to q with maximum value k − 1
– There exists no path from p to q with a maximum value lower than k − 1
– Both p and q have a value lower than k − 1

A path that satisfies the first two conditions for some k is called a lowest path in
this paper. If a lowest path from p to q contains no value that is higher than both
p and q, then p and q are not separated, but are linked. Separation is illustrated
in Fig. 1. The top path in Fig. 1(b) connects two 5-separated pixels. The left
path connects pixels that are not separated (but linked). The right path connects
two 3-separated pixels.

In contrast to most watershed algorithms, topological watershed does not
produce a binary image, but a grey-scale image. Intuitively, grey values of the
pixels are obtained as follows:

– All pixels in a basin have the same grey value, namely the value of the
minimum from the input image that is contained within the basin.

– The values of the pixels on the watershed lines are as low as possible, without
changing the separation relations between the basins. If two pixels from
different basins were k-separated in the input image, they should still be
k-separated in the topological watershed of the image.

The generic algorithm for computing a topological watershed of an image
F proceeds by iteratively lowering some point satisfying a condition of destruc-
tibility until there is no more such points. More precisely, a point x is said to be
W-destructible for F (where W stands for Watershed) if its altitude can be low-
ered by one without changing the number of connected components of the level
set F [k] = {p ∈ E;F (p) < k}, with k = F (x). A map G is called a W-thinning
of F if it may be obtained from F by iteratively selecting a W-destructible point
and lowering it by one. A topological watershed of F is a W-thinning of F which
contains no W-destructible point.

Both the watershed and a topological watershed of the image from Fig. 1(a)
are shown in Fig. 2. Fig. 2(c) shows that the separated pixel pairs from Figure
1(b) are still respectively 5-separated and 3-separated. The third pair is not
shown as it was not separated.



(a) (b) (c)

Fig. 2. Watershed and topological watershed: (a) watershed of Fig. 1(a); (b) topological
watershed of Fig. 1(a); (c) lowest paths between the separated pairs of pixels from
Fig. 1(b).

3 Parallel Implementation

To obtain a fast algorithm, we need to lower a W-destructible point not by 1
as in the generic algorithm, but as much as possible. Following the theoretical
results in [6], the lowest value to which a point can be lowered can be computed
from the Min-tree C(F ). This Min-tree, or component tree, can be obtained using
the parallel algorithm from [8]. Furthermore, the Min-tree allows one to easily
check if two points are separated. More precisely, the separation is related to the
altitude of the Lowest Common Ancestor (LCA) between two nodes of C(F ).
For efficiency, we need to perform preprocessing so that the LCA can be found
in constant time. This is done using the algorithm in [9]. After this we need
to lower all W-destructible pixels in the image to the value of their watershed
basin. A pixel is W-destructible if its value can be lowered without linking two
local minima into a single basin.

A key element of the algorithm is the function W-Destructible, which de-
termines to which grey level a pixel can be lowered in the output. This uses the
LCA value of neighbouring components of a the Min-tree. Because the function
W-Destructible is a local function, we can parallelize the topological watershed
algorithm for n threads simply by dividing the image into n tiles and assigning
one tile to each thread. An example division for a 2D image is illustrated in
Figure 3(a) and a division for a 3D volume is shown in Figure 3(d).

Problems arise when examining border pixels, because their neighbours in
other tiles can be changed at any time by their assigned threads, producing
incorrect results. We can solve these problems by letting each thread process
its tile in different stages, and synchronizing all threads after each stage. Each
tile is divided into sub-tiles, and a different sub-tile is processed in each stage.
The tiles are divided in such a way that no two adjacent sub-tiles need to be
processed at the same time.

Whether or not two sub-tiles are adjacent depends on the connectivity, as
shown in Fig. 3. Fig. 3(a) shows an image divided into 12 tiles for 12 threads.
With 4-connectivity, each tile should be divided into 2 sub-tiles, as shown in
Fig. 3(b). The dark sub-tiles represent the sub-tiles that are processed in the first



(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. Tiling: (a) 2D image; (b) tiling for 4-connectivity; (c) same for 8-connectivity;
(d) 3D volume; (e) tiling for 6-connectivity; (f) same for 18-connectivity and (g) 26-
connectivity;

stage. Note that no two dark sub-tiles are neighbours of each other. However,
they would be neighbours with 8-connectivity, so 4 sub-tiles are used for 8-
connectivity, as shown in Fig. 3(c). Fig. 3(d) shows a 3D volume divided into
8 tiles for 8 threads. For 6-, 18- and 26-connectivity, 2, 4 and 8 sub-tiles are
needed, respectively. This is illustrated in Figures Fig. 3(e), (f) and (g). Again,
the dark sub-tiles represent the sub-tiles to be processed in the first stage.

A single application of the multi-stage algorithm suggested above is however
insufficient. For example, a certain pixel x may need to be lowered to the value
of some local minimum y to obtain a topological watershed of the input image.
However, if pixels x and y are part of different sub-tiles, it is possible that pixel
x will not get the value of y the first time its sub-tile is processed. Multiple
iterations may be needed to obtain the desired result, as in the case of regular
watersheds [2].

The sequential topological watershed algorithm [6] processes all pixels in an
order that is determined by a priority queue, built as preprocessing stage. In the
parallel implementation, this is done when the pixels are processed for the first
time, but visiting each pixel in every later iteration is not necessary. Instead,
we keep track of the pixels that have been changed, and only add those pixels
to the priority queue that are adjacent to pixels in other sub-tiles that changed
recently. For this purpose we will use the binary map pxChanged, that will store
for each pixel whether or not its value has changed recently. The use of this map
is illustrated in Fig. 4.

The parallel algorithm is distributed over two procedures: the procedure
InitializeQueue , which corresponds to the first part of the sequential al-
gorithm, and the procedure TopologicalWatershedTile. , which corresponds
to the second part. Both procedures are given below.



Fig. 4. An example of a pxChanged map in an iteration after the first. The white
pixels in the four adjacent sub-tiles are pixels that are marked as ‘changed’ in the
pxChanged map. The pixels in the current sub tile that are adjacent to such a changed
pixel, marked with x in this figure, are added to the priority queue of the sequential
algorithm.

As its input, the InitializeQueue procedure needs the image F , the min-
tree C(F ) and the corresponding component map Ψ that associates to each point
the node it belongs to in C(F ). Additionally, it also needs the sub-tile T in which
it should operate, and the current state of the pxChanged map. If the pixel turns
out to be W-destructible, it is added to the priority queue with its priority set to
the level to which the pixel may be lowered. Also, this new level is stored in the
map K and a pointer to the component to which the pixel may be added is stored
in the map H. The pixel itself is not lowered yet. Thus, the output consists of
the priority queue L, the maps K and H, and the updated pxChanged map. The
queue L and the maps K and H are all local, but the map pxChanged is global,
and may be read and modified by other threads while this procedure is being
executed. However, each thread will only write in the part of the pxChanged map
that corresponds to its current sub-tile, and will only read in adjacent sub-tiles
that are processed in a different stage, so no conflicts emerge.

The algorithm starts by initializing the priority queue L in line 01. It then
proceeds by setting the pxChanged map to false for every pixel in sub-tile T .
If the procedure is run during the first iteration, then lines 04 to 08 are executed.
In the first iteration, L is initialized exactly like in the original sequential algo-
rithm from [6], apart from the fact that only the pixels within T are processed
instead of all pixels in F .
If the procedure is called after the first iteration, lines 09 to 18 are executed. In
these lines the algorithm checks all border pixels for changed neighbours, and
tests the pixels for W-destructibility if any changed neighbours are found. If a
pixel turns out to be W-destructible, it is added to the priority queue, and the
maps K and H are updated as before.

The second procedure, TopologicalWatershedTile, needs the same input as
the procedure InitializeQueue. The output consists of the updated image F ,
the updated pxChanged map, and the binary variable anyChanges. This variable



Algorithm 1 Queue Initialization

Procedure InitializeQueue (Input F, C(F ), Ψ , T , pxChanged;
Output L, K, H, pxChanged)
01. For k From kmin To kmax − 1 Do Lk ← ∅
02. For All pixels p ∈ T Do pxChanged[p]← false

03. If first iteration Then
04. For All pixels p ∈ T Do
05. c←W-Destructible(F, p, C(F ), Ψ)
06. If c 6= ∅ Then
07. i← level of c; Li ← Li ∪ {p}
08. K(p)← i;H(p)← pointer to c
09. Else
10. For All border pixels p of T Do
11. addP ← false

12. For All neighbours q of p Do
13. If pxChanged[q] = true Then addP ← true

14. If addP = true Then
15. c←W-Destructible(F, p, C(F ), Ψ)
16. If c 6= ∅ Then
17. i← level of c; Li ← Li ∪ {p}
18. K(p)← i;H(p)← pointer to c

anyChanges is used to quickly determine if any changes have occurred in the
sub-tile during the execution of this procedure.

The procedure TopologicalWatershedTile starts by initializing the value of
anyChanges. The function call on line 02 produces an initialized priority queue
L, as well as initialized maps K and H. The rest of the function is mostly the
same as the second part of the sequential algorithm. Line 08 is added, where
the pxChanged map and the anyChanges variable are updated. Also, a new
restriction is added to line 09, saying that only neighbours of p that lie within
the sub-tile T should be added to the priority queue.

With the procedure TopologicalWatershedTile implemented, we can now
define the main parallel algorithm: the procedure ParallelTW. As its input, it
needs the pixel mapping F , the Min tree C(F ) and the corresponding component
map Ψ . Because each thread will run this procedure independently, the global
map pxChanged needs to be provided to each thread as well. However, no initial
values need to be stored in it. Additionally, each thread is provided its identifier
id. The first thread gets id value 0, the second gets value 1 and so on. The
output of the procedure is the updated map F , that will contain the topological
watershed of the input image.

The algorithm keeps looping until a topological watershed of the input image
is found. In each iteration, the loop starting on line 02 is executed once by each
thread. Line 04 starts a loop that visits all stages. The number of stages is equal
to the number of sub-tiles assigned to each thread, as shown in Fig. 3. Line
05 then determines the location and dimensions of the sub-tile to be processed
by the current thread in the current stage. Some examples of the sub-tiles that



Algorithm 2 The algorithm for a single tile

Procedure TopologicalWatershedTile (Input F, C(F ), Ψ , T , pxChanged;
Output F , pxChanged, anyChanges)
01. anyChanges ← false

02. InitializeQueue(F, C(F ), Ψ , T , pxChanged)
03. For k From kmin To kmax − 1 Do
04. While ∃p ∈ Lk Do
05. Lk = Lk\{p}
06. If K(p) = k Then
07. F (p)← k;Ψ(p)← H(p)
08. pxChanged[p]← true; anyChanges ← true

09. For All neighbours q of p within T , with k < F (q) Do
10. c←W-Destructible(F, q, C(F ), Ψ)
11. If c = ∅ Then K(q)←∞
12. Else
13. i← level of c
14. If K(q) 6= i Then
15. Li ← Li ∪ {q};K(q)← i
16. H(q)← pointer to c

should be processed by each thread in the first stage are displayed in Fig. 3. In
the other stages the sub-tiles that are processed should have a similar pattern,
always assuring that no two adjacent sub-tiles are processed at the same time.
The topological watershed of the tile is then computed on line 06. If the algo-
rithm returns that there have been some changes, then this is stored for the
current thread in the (global) anyChangesThr array. After this, a standard bar-
rier function is called, that just waits until all threads have reached this barrier
and then lets all threads continue. This is done to ensure that no thread will
start with the next stage until all threads are done with the current one.
When all threads have finished processing all their sub-tiles, the first thread will
check if there have been any changes in any of the threads. If there have not
been any changes at all, a topological watershed has been found and all threads
will terminate. Otherwise, each thread will go to the next iteration by starting
again with the main loop from line 02.

3.1 Min-Tree Compression

Wilkinson et al. [8] described how to parallelize the computation of a min-tree.
Because the algorithm from [8] also deals with features of the min-tree that we
won’t use, its implementation is simplified somewhat. Basically, the sequential
algorithm is parallelized by letting multiple threads each compute the min-tree
of a different part of the input image, and merging the min-trees of the parts
afterwards. This algorithm uses a representation of the min-tree which is as
large as the image or volume itself, i.e. each pixel or voxel is a node, containing
a pointer to its parent. Only those nodes which have a parent with grey level
greater than its own are relevant to either filtering or the watershed computation.



Algorithm 3 The parallel topological watershed algorithm

Procedure ParallelTW (Input F, C(F ), Ψ , pxChanged, id; Output F )
01. done ← false

02. While not done Do
03. anyChangesThr[id] ← false

04. For All stages s Do
05. T ← current sub-tile, based on id and s
06. TopologicalWatershedTile(F, C(F ), Ψ , T , pxChanged)
07. If anyChanges = true Then anyChangesThr[id] ← true

08. Barrier()
09. If id = 0 Then
10. anyChangesAtAll ← false

11. For All threads t Do
12. If anyChangesThr[t] = true Then
13. anyChangesAtAll ← true

14. Barrier()
15. If anyChangesAtAll = false Then done ← true

These nodes are called level roots. When the min-tree is built in parallel, not
all pixels of a given min-tree node directly point to the level root. This means
finding a level root is costly. Because the LCA algorithm inspects the level roots
often, we need to compress the tree in the sense that all parent pointers always
point to a level root, yielding what is referred to as a canonical representation
of the tree [?]. This reduces the computation time of the LCA algorithm. The
algorithm is shown in Alg. 4.

The procedure CompressTree needs a map F , a component tree C(F ) and a
corresponding component map Ψ as its input, as well as the identifier id of the
thread that executes it. The output of the procedure consists of the compressed
component tree and map. Function LevelRoot2 is used by CompressTree to
obtain the level roots, without ever writing in memory sections not assigned to
the current thread.

Algorithm 4 The Min-tree compression algorithm.

Function LevelRoot2 (Input c, F , C(F ))
01. If c = root(C(F )) ∨ F (c) 6= F (parent(c)) Then
02. Return c
03. Else
04. Return LevelRoot2(parent(c), C(F ), F )

Procedure CompressTree (Input F , C(F ), Ψ , id; Output C(F ), Ψ)
01. For All components c ∈ segment id of C(F ) Do
02. parent(c) ← LevelRoot2(parent(c), F , C(F ))
03. For All pixels p ∈ segment id of F Do
04. Ψ(p)← LevelRoot2(Ψ(p), F , C(F ))



(a) (b) (c) (d)

Fig. 5. The four test input images. (a) shows a satellite image, (b) an image with
random pixel values, (c) an image with a spiral-shaped plateau and (d) an angiogram,
which is a 3D volume.

4 Results

The implementation was tested on the following four different input images: (i) a
4000 × 4000 satellite image of an airfield, (ii) a 4000 × 4000 image in which each
pixel has a random grey value (iii) a 1000 × 1000 image with a spiral shaped
plateau, and (iv) an angiogram with dimensions 256 × 256 × 128. The spiral
image was chosen as a (near) worst-case scenario, in the same way as in [2].
The random noise image was another extreme case. The images are displayed in
Fig. 5.

All data sets were tested on a 4-socket, 6-core per sockets, AMD Opteron-
based machine with 128 GB of memory, using 1 to 24 threads, and various
connectivities (4 and 8 in 2D, 6, 18 and 26 in 3D). The memory is divided into
banks assigned equally to each processor sockets, but is accessible as shared
memory amongst all cores. Accessing memory of another processor socket does
incur a slight speed penalty. In all cases, each thread was initially assigned an
equal slice of the image or volume during the min-tree construction phase, as in
[8], and an equal tile as described in section in the remainder of the algorithm
as detailed above.

The previously existing sequential algorithm by Couprie et al. [6] and the
newly implemented parallel algorithm were run on the same machine with the
same input (the satellite image, with 4-connectivity using 1 thread) to compare
the two versions on a single core.

On the satellite image, we obtained a wall-clock time of 86.36 s at 4 con-
nectivity, for a single thread. This dropped to 17.14 s at 8 threads, 9.71 s at
16 threads, and 7.17 s at 24 threads. At 8 connectivity, all times rose, and the
timings were 135.17 s at 1 thread, decreasing in a similar fashion to 12.04 s at
24 threads. The noise image (at 4 connectivity) showed a very similar pattern,
decreasing from 112.83 s on 1 thread to 11.95 s on 24 threads. The influence
of connectivity was most profound in the 3D case. At 6 connectivity, timings
run from 73.18 s at 1 thread to 5.7 s at 24 threads. At 18 connectivity these
figures rise to 214.71 s and 16.62 s respectively, increasing further to 359.22 s
and 33.37 s at 26 connectivity.



Fig. 6. The overall behaviour of the algorithm: (a) The total speedups in the performed
tests, relative to the wall-clock time for a single thread with the same input; (b) the
contributions of the four stages to the total wall-clock time of the algorithm, when
computing the topological watershed for the satellite image with 4-connectivity.

As expected, the (smaller) spiral image behaved very differently, with timings
of 4.29 s on 1 thread, 1.71 s on 8, 1.58 s on 16, and increasing again at 24 threads
to 1.99 s. This is due to the increase in the number of iterations of the topological
watershed algorithm.

The overall behaviour is shown in Fig. 6. In Fig. 6(a) the diagonal line shows
the ideal speedup, the line at the bottom shows the speedup for the spiral image.
The line through the grey area shows the speedup for the satellite image with
4-connectivity, which is computed for each number of threads individually. The
grey area represents the results of the all tests, excluding for the spiral image.
The top and bottom of the grey area are defined as the average speedup of their
stage plus and minus the standard deviation, respectively.

In Fig. 6(b) we show the contributions of the four stages to the total wall-
clock time of the algorithm. The bottom layer represents the time consumed by
the construction of the min-tree, the second layer from the bottom represents
the time taken to compress the min-tree, the third layer shows the time it takes
to perform the preprocessing for the LCA, and finally the remaining layer on top
represents the time consumed by the final stage which produces the topological
watershed.

The individual speedups are shown in Figure 7. The speedup of each stage
is represented by a black line and a grey area, where the line shows the speedup
of that stage when computing the satellite image with 4-connectivity. The cor-
responding grey area represents the results of the remaining tests as in Fig. 6,
again excluding the spiral image. The diagonal lines show the ideal speedup,
where the speedup is equal to the number of threads.

The construction of the component tree and the final stage that computes the
topological watershed parallelize quite well, while the tree compression and the
LCA preprocessing parallelize rather poorly. Fortunately, the tree compression
takes up only a small percentage of the total wall-clock time, even when 24
threads are used. However, this percentage will probably increase when more
threads are used. The LCA has a larger impact on the total wall-clock time of



(a) (b)

Fig. 7. The speedups of the four stages of the algorithm: (a) Top: min-tree construction,
bottom: tree compression; (b) Top: topological watershed computation, bottom: LCA
preprocessing.

the algorithm, and will cause the speedup of the total algorithm to decrease
more severely when using a larger number of threads.

Note however, that all speedups reported are relative to the wall-clock times
of the parallel algorithm using one thread. In practice, the previously existing
sequential implementation performs about 1.5 times faster than parallel algo-
rithm when only one thread is used. On two threads, the current algorithm has
the edge, albeit by a small margin. Further optimizations in the parallel algo-
rithm, for example by using a better tree compression method, may reduce this
difference.

5 Conclusions

This paper described a way to parallelize the computation of the topological
watershed. An implementation that was created according to this description
showed that a reasonably good speedup could be achieved while using up to 24
threads, and the trend in the results suggests that even better speedups may be
achieved when more than 24 threads are used.

The parallel implementation may be improved further by creating a more
compact min-tree in the min-tree construction or compressing it more in the tree
compression stage. For example, each node in the min-tree that has only one child
can be merged with that child, setting all pixels belonging to its component to
the grey level of its child, and setting the parent of its child to be the parent of the
node itself. This simple change could significantly reduce the LCA preprocessing
time, and may also improve the wall-clock time of the last stage where the
topological watershed is computed.

Better results may also be obtained by implementing the LCA preprocessing
more efficiently, especially the list ranking part (see [9]). A simple list ranking
algorithm was used in our implementation, while more sophisticated and better



performing algorithms already exist. A list ranking algorithm that parallelizes
better and has higher speedups, may significantly reduce the total wall-clock
time of the algorithm, especially when using larger numbers of threads.

Furthermore, the image is now divided into tiles which are each processed
by their own thread. This division is only based on the image dimensions and
the number of threads, not on the contents of the image. Taking into account
the contents of the image, maybe in combination with the min-tree and com-
ponent map, while dividing the image among the threads may reduce the com-
munications needed between the different threads, which could lead to a faster
algorithm. We can also try other ways of tiling the image, following [10].

In short, there is still room for improvement in the parallel algorithm pro-
posed in this paper, but in its current form it can already be used to greatly speed
up the computation of the topological watershed, compared to the previously
existing sequential algorithm.

References

1. Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection. In: Interna-
tional Workshop on image processing, real-time edge and motion detection/esti-
mation. (1979) 17–21

2. Roerdink, J., Meijster, A.: The Watershed Transform: Definitions, Algorithms and
Parallelization Strategies. Fundamenta Informaticae 41 (2001) 187–228

3. Bertrand, G.: On topological watersheds. Journal of Mathematical Imaging and
Vision 22(2) (2005) 217–230

4. Couprie, M., Bertrand, G.: Topological grayscale watershed transformation. In:
SPIE Vision Geometry V Proceedings. Volume 3168., Citeseer (1997) 136–146

5. Najman, L.: On the equivalence between hierarchical segmentations and ultramet-
ric watersheds. J. Math. Imag. Vis. (2010) to appear.

6. Couprie, M., Najman, L., Bertrand, G.: Quasi-linear algorithms for the topological
watershed. J. Math. Imag. Vis. 22 (2005) 231–249

7. Najman, L., Couprie, M., Bertrand, G.: Watersheds, mosaics and the emergence
paradigm. Discrete Applied Mathematics 147(2-3) (April 2005) 301–324

8. Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J.E., Meijster, A.: Concur-
rent computation of attribute filters using shared memory parallel machines. IEEE
Trans. Pattern Anal. Mach. Intell. 30(10) (2008) 1800–1813

9. Schieber, B., Vishkin, U.: On finding lowest common ancestors: simplification and
parallelization. SIAM Journal on Computing 17(6) (1988) 1253–1262

10. Matas, P., Dokládalova, E., Akil, M., Grandpierre, T., Najman, L., Poupa, M.,
Georgiev, V.: Parallel Algorithm for Concurrent Computation of Connected Com-
ponent Tree. In: Advanced Concepts for Intelligent Vision Systems (ACIVS’08).
Volume 5259/2008 of Lecture Notes in Computer Science., Springer-Verlag (Octo-
ber 2008) 230–241


