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Abstract. The paper proposes a new parallel connected-component-tree 
construction algorithm based on line independent building and progressive 
merging of partial 1-D trees. Two parallelization strategies were developed: the 
parallelism maximization strategy, which balances the workload of the 
processes, and the communication minimization strategy, which minimizes 
communication among the processes. The new algorithm is able to process any 
pixel data type, thanks to not using a hierarchical queue. The algorithm needs 
only the input and output buffers and a small stack. A speedup of 3.57 
compared to the sequential algorithm was obtained on Opteron 4-core shared 
memory ccNUMA architecture. Performance comparison with existing state of 
the art is also discussed. 

1   Introduction 

Computer vision systems are asked to furnish high performance and be flexible for 
a large variety of existing or possible applications. One of the global problems of the 
vision system design is how to achieve these two characteristics simultaneously. If the 
high performance is achieved by an optimization effort which means a kind of system 
specialization, it will (by definition) limit its flexibility.   

The connected component tree (CCT) based image processing algorithms seem to 
be very promising from this point of view. They allow bridging the gap between low- 
and high-level processing implementations. They have been used for filtering [1, 5] as 
well as the image analysis: motion extraction [1], watershed segmentation [6, 2, 14], 
segmentation of astronomical images [3] or data visualization [13]. 

Fig. 1 shows typical stages of an application based on CCT. We can see the 
advantage of these methods: once the CCT is constructed, the processing is performed 
on the tree by graph transformation(s), and only one data structure is used from low-
level to high-level processing. In addition, the graph transformations are applicable to 
any dimension (1D, 2D, 3D …).  



 

Fig.  1 Stages of a typical CCT-based application and times of execution 

On the other hand, the main bottleneck is represented by the CCT construction, 
consuming about 80% of the application execution time (see Fig. 1), which is 
penalizing for a lot of practical applications.  

In the past, several algorithms have been proposed in order to solve this problem. 
In majority of cases they remain sequential and the improvement relies on fast data 
structures (FIFO-like) [1] or on optimization of computational complexity [2]. Some 
parallelization effort has been done on shared-memory computers by [10, 5]. 
However, if the obtained performances are interesting they are insufficient for real-
time and not adapted to the embedded systems [8]. 

In this paper, we present new parallel algorithm for computation of the CCT. The 
algorithm proceeds line by line (inspired by [4]). Then the line trees are progressively 
merged. Since the line-based CCT construction is extremely fast, a new parallelization 
strategy is needed for concurrent implementation. This paper presents and evaluates 
two parallelization strategies: i) parallelism maximization, ii) limited communication 
among computing blocks. In addition, our algorithm makes use of memory-aware data 
structure hence it is more suitable for embedded system implementation. 

The paper is organized as follows. Section 2 shortly discusses existing sequential 
and parallel algorithms and analyses their computational complexity. In Section 3, we give 
basic mathematical background. Section 4 presents the new proposed algorithm, the 
parallelization approaches and their theoretical evaluation. Finally, some experimental 
results on real multi-processor systems are presented in Section 5. 

2   State of the art 

Three main classes of sequential algorithms exist in the literature: 
-  Flooding-based algorithms [1]: processing starts from the image pixel having the 

lowest level. A depth-first traversal of tree components, similar to flood-fill, is 
performed. In general, the flooding process relies on the use of ordered data 
structures: i) hierarchical queues, unusable for floating-point pixel representation, 
ii) priority queues, inefficient from the time and memory point of view. 

- Emerging-based algorithms: image pixels are processed in decreasing order of 
luminosity. It requires prior pixel sorting which could be done efficiently. The 
emerging components are processed as disjoint sets of pixels, based on Tarjan’s 
Union-Find algorithm [7]. In [2], both total path compression and weighting are 
used to speedup the disjoint set algorithm and the algorithm complexity is 
quasilinear. [3, 8, 9] use only total path compression in order to save memory. 
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- 1-D algorithms: it is a special category where the CCT is built on 1-D signal. Thus, 
the pixel processing ordering is unnecessary and the tree can be built in linear 
time [4]. These algorithms are extremely fast, but they cannot process 2-D data. 
However, if tree merging is added [10], they are usable for any dimension, so we 
have chosen this approach. 

In order to accelerate the execution time, Meijster [10] studies the first 
implementation of CCT computation on shared memory machines. Recently, 
Wilkinson [5] has published a modification of the Meijster’s approach and has 
demonstrated the computation performance on 3-D data. The principle consists of 
image division into regular domains. A modification of Salembier’s algorithm [1] is 
used to build a CCT of each domain independently. Then, the trees of the domains are 
merged in a binary-tree fashion. See Table 1 which summarizes the complexity 
analysis of the existing CCT computation algorithms (sequential and parallel). 

Table 1. Complexity analysis. N is the total number of pixels in the image, G is the number of 
grey levels of the image, α is a very slow-growing “diagonal inverse” of the Ackermann’s 
function, α(1080) ≈ 4. For the Wilkinson’s algorithm, P is the number of processes 

 Time complexity 
Memory requirements 

calculation hints 
Data types 

Salembier [1] O(NG) 4N + 3G + stack small int 

Najman-Couprie [2] O(N α(N)) 7N + G + stack int/float 

Berger [3] O(N log N) 4N + stack int/float 

Levillain [12] O(NG log N) 2N + stack int/float 

Menotti (1D) [4] O(N) 3N + G + stack int/float 

Wilkinson (3D) [5] 
(building + merging) 

O(NG/P + 
N 2/3G log N log P) 

3N + 3G + stack small int 

3   Mathematical background 

Let us consider a function f : Z2 → R  an image associated with 4-connectivity (can be 
generalized to any dimension and connectivity), where below V = supp(f) denotes the 
set of points (pixel coordinates) of the image and R is the real number set. We call a 
k-level connected component (C ⊂ V) if all of the following conditions are met: 
1. C is connected with regard to the 4-connectivity. 
2. ∀ x ∈ C :  f(x) ≥ k 
3. No other point y ∈ V can be added to C without violating the conditions 1 or 2. 
 

We call h(C) = min{f(x) ; x ∈ C} the altitude of component C. For each point x ∈ V 
we define Cf(x) as the component of the image f, which has the altitude h(Cf(x)) = f(x) 
and which contains the point x. 

The connected components of the image may be organized, thanks to the inclusion 
relation, to form a rooted tree structure called connected component tree: For each 



two components C1, C2 of the image f, we say that C1 is the parent of C2 precisely if 
C2 ⊂ C1 and there is no other component C3 of image f, such that C2 ⊂ C3 ⊂ C1. 

We call the subset C' = { x ∈ C ; f(x) = h(C) } of component C as the core of the 
component C. It is the set of points of the component C, which belong to no 
descendant of C. Note that each point of V belongs to exactly one component core. 
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Fig.  2 Component trees: a) an example image f with points numbered in scan-line order; white 
background represents the highest level of  f.  b) the component tree of the image f; the points 
of the component’s core are underlined.  c) the point-tree of the image f ; level roots are marked 
with double circles 

In our algorithm we use a memory-aware representation [10], [5] of the component 
tree called point-tree [11]. The point-tree (PT) of the image f  is a rooted tree, whose 
nodes are points of the image  f  and where points of each component of the image  f  
form a subtree of PT. Note that there may be more than one valid point-tree 
corresponding to a given image. 

The edges of PT are represented by parent pointers stored in an array named 
par : V → V ∪ {⊥} where ⊥ stands for null pointer. For each point x ∈ V, par[x] is 
the parent of x if x is not the root of PT and par[x] = ⊥ if x is the root of PT. We 
define  f(⊥) = –∞. 

It can be shown that for each point x ∈ V : 
− f(par[x])  ≤  f(x) 
− If  f(par[x]) < f(x) then Cf(par[x]) is the parent component of Cf(x) and x is the root 

of PT’s subtree composed of points of Cf(x). We say that x is the level root of the 
component Cf(x) and of all its core’s points. 

− If  f(par[x]) = f(x) then Cf(par[x]) = Cf(x) and we say that x is not a level root. 

4   New algorithm description 

The algorithm proceeds in two steps: a partial point tree is computed independently 
for each line (Algorithm 1) and then the partial trees of neighboring lines have to be 
merged together. 



Partial point-tree computation 
Menotti’s 1-D algorithm was modified to produce a PT, which is suitable for 

merging and parallelization, instead of a component tree structure and component 
mapping. The algorithm processes the points of the line in a single linear scan from 
left to right and stores the result as the point-tree to allow a subsequent merging. The 
algorithm uses only a stack (LIFO) to store the points, whose parent pointers could not 
be determined yet. The stack supports these operations: 
− StackPush(x) : Adds the point x to the top of the stack. 
− StackPop() : Removes one point from the top of the stack. 
− StackLast() : Returns the point at the top of the stack without stack 

modification or ⊥ if the stack is empty. 
− StackEmpty() : Returns true if the stack is empty. 

The first point of the line is a level root, because it is surely the leftmost point of 
some component core. Variable r is initialized to this first point and the scan starts 
from the second point of the line. Note that the leftmost point of each component core 
is treated as a level root. 

The following invariant holds during the scan: before and after each iteration of the 
scan, i) the variable r holds the level root of the last processed point and ii) the stack 
contains all level root ancestors of r encountered so far, ordered by their levels, the 
highest level on the top of the stack. 

The parent pointer of each point is assigned exactly once, just before the point is 
dropped from the stack; from the variable r and the variable p used during the scan. 
The parent pointer is always set to point to a level root, so a perfectly compressed 
point-tree is produced. 

A new point p is processed in each iteration of the scan. Its level f(p) is compared 
to the level f(r). There are three possibilities: 
− f(r) < f(p) : point p is the leftmost point of a new component core, so it is a level 

root. Point r is a (possibly indirect) ancestor of p, because r is the level root of its 
left neighbor. Current r is pushed to the stack and p is set as the new value of r. No 
point is dropped, so no parent pointer is set. 

− f(r) = f(p) : point p belongs to the same component core as the last processed point 
and r is its level root, so r is assigned to par[p] and p is dropped. 

− f(r) > f(p) : the component represented by point r is completed and its parent has to 
be determined. Let q be the point on the top of the stack. Either p or q is the parent 
of r, depending on their levels, so f(p) is compared to f(q). Again, there are three 
possibilities: 

− The stack is empty or f(q) < f(p) : point p is the leftmost point of a new 
component core, so it is a level root. It is also the parent of r, so p is assigned 
to par[r] and r is dropped. Point p is set as the new value of r. 

− f(q) = f(p) : the points q and p belong to the same component core. The point 
q is its level root and the parent of r, so q is assigned to both par[p] and 
par[r] and both p and r are dropped. Point q is removed from the stack and 
set as the new value of r. 

− f(q) > f(p) : point q is the parent of r, so it is assigned to par[r] and r is 
dropped. Point q is removed from the stack and set as the new value of r. But 



now, f(r) is still greater than f(p). This means that the component represented 
by the new value of r is completed and its parent has to be determined now. 
This is done by repeating the decision process with the same p, the new value 
of r and the new state of the stack. 

After the scan finishes, r contains the level root of the last point of the line and all 
its ancestors are in the stack. They are removed from the stack one by one and parent 
pointers are set accordingly. The last point removed from the stack is the tree root.  

Algorithm 1 1-D algorithm for computation of point-tree 

V = {0 … W – 1} × {0 … H – 1} 
line ∈ {0 … H – 1} is the number of the line to be processed 
Vline = {0 … W – 1} × {line} = { ( i, j) ∈ V ; j = line } is the set of points of one line 
Input:  image f : Vline → R 
Output:  point-tree par : Vline → Vline ∪ {⊥} 
procedure build1D(line : integer) = 
1  var r : point := (0, line) ; 
2  for p : point := (1, line) ... (W - 1, line) do 
3       if f(r) < f(p) then 
4            StackPush(r) ; 
5            r := p ; 
6       elsif f(r) = f(p) then 
7            par[p] := r ; 
8       else loop 
9                 var q : point := StackLast() ; 
10                 if f(q) < f(p) then 
11                      par[r] := p ; r := p ; 
12                      break ; 
13                 elsif f(q) = f(p) then 
14                      par[r] := q ;  par[p] := q ; r := q ; 
15                      StackPop() ; break ; 
16                 else 
17                      par[r] := q ; r := q ; 
18                      StackPop() ; 
19  end; end; end; end; 
20  while StackEmpty() = false do 
21       par[r] := StackLast() ; r := StackLast() ; 
22       StackPop() ; 
23  end; 
24  par[r] := ⊥ ;  (* r is root *) 
end; 

Merging of partial point-trees 
Generally speaking, we take two adjacent point-trees as input and modify their 

parent pointers to create a single point-tree. The merging operation is done in 
procedure connect(x, y), which is executed for each pair of points x and y, where x 
is in the first point-tree, y is in the second point-tree and x and y are neighbors in 4-
connectivity sense. Procedure connect follows the parent pointer paths from x and y 
respectively to the root of the tree and changes the parent pointers to form a single 
path. The new path includes nodes visited along both paths in correct order of levels. 
When the two parent pointer paths meet, the procedure is terminated. Note that the 
principle is the same as used in [5], with some simplifications. 



Algorithm 2 Merging process of two adjacent point-trees  

The first point-tree starts at line a and ends at line border – 1, the second point-tree starts at line border 
and ends at line b (0 ≤ a < border ≤ b < H) 

Va,b = {0 … W – 1} × {a … b} = { ( i, j) ∈ V ; a ≤ j ≤ b } is the set of points of the two trees 
Input:  image f : Va,b → R; point-tree par : Va,b → Va,b ∪ {⊥} 
Output: point-tree par : Va,b → Va,b ∪ {⊥} 
 
1  procedure levroot(x : point) returns point = 
2       if f(x) = f(par[x]) then 
3            par[x] := levroot(par[x]) ; return par[x] ; 
4       else 
5            return x ; 
6  end; end; 

 
7  procedure connect(x, y : point) = 
8       x := levroot(x) ;  y := levroot(y) ; 
9       if f(y) > f(x) then swap(x, y) ; end; 
10       while x ≠ y do 
11            if par[x] = ⊥ then 
12                 par[x] := y ;  x := y ; 
13            else 
14                 var z := levroot(par[x]) ; 
15                 if f(z) > f(y) then 
16                      x := z ; 
17                 else 
18                      par[x] := y ; x := y ; y := z ; 
19  end; end; end; end; 
 
20  procedure merge(border : integer) = 
21       for all neighbors x, y between lines (border – 1) and border do 
22            connect(x, y) ; 
23  end; end; 

4.1   Concurrent implementation 

Parallelism Maximization Strategy. The point-trees of individual lines are 
independent after the building; there are no parent pointer links between the nodes of 
different lines. To create a complete point-tree of the image, which consists of H lines, each 
two adjacent lines have to be merged. When two lines merging started, two originally 
independent point-trees become connected and a larger point-tree is formed. No other 
process should work on the two trees being merged. To achieve maximal parallelism, 
it is the best to merge point-trees of the same or similar sizes, whenever possible. For 
this reason, each merge step of our algorithm merges two point-trees, which consist of 
2k lines each, into one point-tree of 2k + 1 lines. Only if the height H of the image is not 
a power of two, then the point-tree, which includes the last line of the image, may be 
smaller than the point-tree which it is merged with. 

The algorithm consists of H building operations and (H – 1) merging operations. 
Their dependencies are shown in figure 3. Each building operation accepts one line of 
the image, i.e. W × 1 pixels, n bits per pixel as the input and produces the point-tree of 
the same size, m bits per parent pointer. 
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Fig. 3. Data dependency graph. a) Parallelism maximization strategy, b) Communication 
minimization strategy. The enclosing polygons show which operations are done by a single 
process 

The algorithm is executed in P ∈ N (natural number) independent parallel 
processes (threads). Numbered lines in a queue are fetched by the individual 
processes. The queue is represented by a shared next_line counter. The counter has to 
be read first and then incremented on each fetch. This is done by the synchronized 
procedure get_next_line, where “Synchronized” means that if two processes 
attempt to enter the procedure at the same time, one of them has to wait until the other 
leaves the synchronized procedure. When a line is fetched by the process, the process 
performs the building operation. Then the process proceeds to the cascade of merging 
operations following the path from the build job to the right in the data dependency 
graph. The process performs as many merging operations as possible without waiting. 
Each merging job requires two inputs (two point-trees). One of the inputs is carried by 
the process which is about to perform the merging job. The other input has to be 
supplied by another process. The boolean array block_ready is used to keep track of 
merging jobs which are ready to be done. An element of block_ready is true if the 
corresponding merging job has at least one input ready. The process, which attempts 
the merging, calls the synchronized procedure test_merge. This procedure reads 
the previous value of the corresponding element of block_ready, which it will return, 
and sets it true. If the read value is true (the process is the second one to attempt this 
merging job), it means that the other input of the merging job is ready and the job is 
performed by the process. If the read value is false (the process is the first one to 
attempt the merging job), the other input is not ready yet, so the process leaves the 
cascade of merging operations and fetches next unassigned line to be built. We can 
see that each building job will be done exactly once, because each of them is fetched 
by one process. Also each merging job will be done exactly once, because exactly one 
process attempts each merging job as the second. If a process attempts to fetch next 
unassigned line, but there are no more lines left, the process exits. The algorithm ends 
when all processes exit. 
 



Algorithm 3 Concurrent implementation 

Input:  image f : V → R 
Output: point-tree par : V → V ∪ {⊥} 
1  var next_line : integer := 0 ; 
2  var block_ready[1..H] : boolean ; (elements initialized to false) 
3  synchronized procedure get_next_line() returns integer = 
4       if next_line < H then 
5            return next_line++ ; 
6       else 
7            return -1 ; 
8  end; end; 

 
9  synchronized procedure test_merge(border : integer) 

returns boolean = 
10       var result : boolean := block_ready[border] ; 
11       block_ready[border] := true ; 
12       return result; 
13  end; 
 
14  process line_parallel_tree() = 
15       while (var line := get_next_line()) != -1 do 
16            build1D(line) ; (* Build partial tree*) 
17            var block_no := line ;  
18            var block_size := 1 ; 
19            while block_size < H do (*Merge as deep as possible*) 
20                 block_no := block_no div 2 ; 
21                 block_size := block_size * 2 ; 
22                 var border := (block_no + 1/2) * block_size; 
23                 if border < H then 
24                      if test_merge(border) = true then 
25                           merge(border) ; 
26                      else 
27                           break ; 
28  end; end; end; end; end; 

 
Communication Minimization Strategy. The algorithm is executed in P ∈ N 

(natural number) independent parallel processes (threads). The entire image is divided 
into P roughly equal-sized blocks of approximately (H / P) lines (the numbers of lines 
per block have to be integers). The data dependency graph is the same as for the line 
parallel algorithm only if the block size is a power of 2 lines (Fig. 3b). If the block 
size is not a power of 2 then the data dependency graph is slightly different. Each 
block is assigned to one process. The process builds and merges all lines of the block 
into the point-tree of the block, just like the line parallel algorithm running in a single 
process does. It means that after building of a line, as many merging steps as possible 
are done. Synchronization is no more necessary, because the job execution order is 
known in advance. After the block was built and merged, it is merged with the other 
blocks. If we consider processing of the block as a single building operation, the data 
dependency graph applies to the merging of the blocks as for the line parallel 
algorithm. One of the processes, which reach a merging operation, terminates and the 
other process proceeds with merging. The final point-tree is done when last two 
blocks are merged. 



4.2   Time complexity and memory requirements 

The time complexity of the building operation (procedure build1D) was already 
analyzed in [4] and equals O(W). 

For its memory requirements, let us consider that: no point can be inserted twice 
into the stack; no two points simultaneously present in the stack can have the same 
level; the last point is never inserted into the stack; the points with the highest level are 
never inserted into the stack. Thus, the maximum stack size is min(W – 1, G – 1). 

The merging operation time complexity was already analyzed by Wilkinson [5] and 
is O(WG log N). The merging operation does not need any additional memory except 
input and output buffers. The recursive procedure levroot needs a stack to store the 
points for path compression. It is possible to avoid the need for stack by implementing this 
procedure without recursion, but the parent pointers have to be read twice. 

The total time complexity of the algorithm is dominated by the merging operations 
and is O(NG log N) for the whole image with N pixels and G grey levels. 

The total memory requirements are input buffer of N pixels, output buffer of N 
memory pointers and a stack of size min(W – 1, G – 1). 

5   Experimental results 

The algorithm described in the previous section was implemented in C and 
compiled using Visual C++ 2005 Express Edition. The benchmarks were run on two 
different computers with 2 and 4 CPU cores: 
− 2-core machine: Portable computer with Intel Pentium Dual-Core T2330 

@ 1.6 GHz, 1 GB RAM, Windows XP Professional SP2 
− 4-core machine: 2× dual-core AMD Opteron 280 @ 2.4 GHz, 16 GB ccNUMA 

RAM, Windows Server 2003 R2 
We measured the wall clock times (real time elapsed from start to end of the task) 

of the two parallelization strategies (parallelism maximization and communication 
minimization) for 1, 2, 4, 8, 16 threads on a test image of size 784×576 px (8 bits). 
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Fig. 4. Parallelism maximization strategy timings: a) Wall clock time versus number of threads, 
b) Speedup with respect to the sequential algorithm versus number of threads. 
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Fig. 5. Communication minimization strategy timings: a) Wall clock time versus number of 
threads, b) Speedup with respect to the sequential algorithm versus number of threads. 

On the 2-core machine, we get maximal speedup 1.95 from 89.0 ms to 45.6 ms for 
2 threads for the parallelism maximization strategy and the results for the 
communication minimization strategy are very similar. On the 4-core machine, we get 
maximal speedup 3.57 from 55.1 ms (0.122 µs/pixel) to 15.4 ms (0.034 µs/pixel) for 4 
threads for the communication minimization strategy. Maximum speedup is obtained 
when number of cores and threads match. Theoretical maximal speedup is 2.0 and 4.0 
for 2 and 4 cores respectively. The numbers measured are less than theoretical 
because of the workload imbalance and overhead. 

The time increases roughly linearly with increasing width of the image. 
Results obtained by Wilkinson on the 2× dual-core Opteron machine with 8 GB 

RAM operating on a 5123 8-bit volumetric data set are as follows: Wall clock time for 
1 thread was 73 s (0.54 µs/voxel), wall clock time for 64 threads was 13.7 s (0.102 
µs/voxel), that gives the speedup 5.3. 

6   Conclusions 

We have designed a new parallel algorithm for CCT construction. The algorithm 
design was focused on maximal parallelism. Both parallelization strategies minimize 
the traffic between the execution units and the memory. The communication 
minimization strategy also minimizes the traffic among the execution units, but its 
disadvantage is the fixed process workload assignment. The parallelism maximization 
strategy has advantage when the data stream is of serial form from the sensor, because 
it takes the lines of the image from top to bottom, one by one. The parallelism 
maximization strategy provides a usable workload balancing, but depends on a 
significant amount of synchronization among processes. 

The Salembier-based Wilkinson’s algorithm is slow when the difference of 
neighbor levels is large. The new algorithm does not depend on absolute levels, so it is 
able to process any pixel data type (including floating point representation) without 
large performance loss, thanks to not using a hierarchical queue. 

Wilkinson obtains the biggest speedup for number of threads far higher than 
number of physical CPUs. He explains that by improvement of data locality due to 



dividing of the image into smaller blocks. This does not apply to our algorithm, 
because it proceeds by lines of size independent of number of threads, so best speedup 
is obtained when number of threads equals number of physical cores. Additional 
increase of thread count extends the time due to thread management overhead. 

The new algorithm takes approximately 3 times less time to process one image 
element compared to Wilkinson’s algorithm. 

In the future we will evaluate a tradeoff between the presented strategies and 
optimize it for the Cell platform, a powerful multiprocessor on a chip. 
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