
Parallel Algorithm for Concurrent Computation of
Connected Component Tree

P. Matas1,2, E. Dokladalova1, M. Akil1, T. Grandpierre1,
L. Najman1, M. Poupa2, and V. Georgiev2

1 IGM, Unité Mixte CNRS-UMLV-ESIEE UMR8049, Université Paris-Est,
Cité Descartes, BP99, 93162 Noisy le Grand, France

{matasp, e.dokladalova, akilm, grandpit, l.najman}@esiee.fr
2 Department of Applied Electronics and Telecommunications, University of West

Bohemia, Univerzitní 26, 306 14 Plzeň, Czech Republic
{pmatas, poupa, georg}@kae.zcu.cz

Abstract. The paper proposes a new parallel connected-component-tree
construction algorithm based on line independent building and progressive
merging of partial 1-D trees. Two parallelization strategies were developed: the
parallelism maximization strategy, which balances the workload of the
processes, and the communication minimization strategy, which minimizes
communication among the processes. The new algorithm is able to process any
pixel data type, thanks to not using a hierarchical queue. The algorithm needs
only the input and output buffers and a small stack. A speedup of 3.57
compared to the sequential algorithm was obtained on Opteron 4-core shared
memory ccNUMA architecture. Performance comparison with existing state of
the art is also discussed.

1 Introduction

Computer vision systems are asked to furnish high performance and be flexible for
a large variety of existing or possible applications. One of the global problems of the
vision system design is how to achieve these two characteristics simultaneously. If the
high performance is achieved by an optimization effort which means a kind of system
specialization, it will (by definition) limit its flexibility.

The connected component tree (CCT) based image processing algorithms seem to
be very promising from this point of view. They allow bridging the gap between low-
and high-level processing implementations. They have been used for filtering [1, 5] as
well as the image analysis: motion extraction [1], watershed segmentation [6, 2, 14],
segmentation of astronomical images [3] or data visualization [13].

Fig. 1 shows typical stages of an application based on CCT. We can see the
advantage of these methods: once the CCT is constructed, the processing is performed
on the tree by graph transformation(s), and only one data structure is used from low-
level to high-level processing. In addition, the graph transformations are applicable to
any dimension (1D, 2D, 3D …).

Fig. 1 Stages of a typical CCT-based application and times of execution

On the other hand, the main bottleneck is represented by the CCT construction,
consuming about 80% of the application execution time (see Fig. 1), which is
penalizing for a lot of practical applications.

In the past, several algorithms have been proposed in order to solve this problem.
In majority of cases they remain sequential and the improvement relies on fast data
structures (FIFO-like) [1] or on optimization of computational complexity [2]. Some
parallelization effort has been done on shared-memory computers by [10, 5].
However, if the obtained performances are interesting they are insufficient for real-
time and not adapted to the embedded systems [8].

In this paper, we present new parallel algorithm for computation of the CCT. The
algorithm proceeds line by line (inspired by [4]). Then the line trees are progressively
merged. Since the line-based CCT construction is extremely fast, a new parallelization
strategy is needed for concurrent implementation. This paper presents and evaluates
two parallelization strategies: i) parallelism maximization, ii) limited communication
among computing blocks. In addition, our algorithm makes use of memory-aware data
structure hence it is more suitable for embedded system implementation.

The paper is organized as follows. Section 2 shortly discusses existing sequential
and parallel algorithms and analyses their computational complexity. In Section 3, we give
basic mathematical background. Section 4 presents the new proposed algorithm, the
parallelization approaches and their theoretical evaluation. Finally, some experimental
results on real multi-processor systems are presented in Section 5.

2 State of the art

Three main classes of sequential algorithms exist in the literature:
- Flooding-based algorithms [1]: processing starts from the image pixel having the

lowest level. A depth-first traversal of tree components, similar to flood-fill, is
performed. In general, the flooding process relies on the use of ordered data
structures: i) hierarchical queues, unusable for floating-point pixel representation,
ii) priority queues, inefficient from the time and memory point of view.

- Emerging-based algorithms: image pixels are processed in decreasing order of
luminosity. It requires prior pixel sorting which could be done efficiently. The
emerging components are processed as disjoint sets of pixels, based on Tarjan’s
Union-Find algorithm [7]. In [2], both total path compression and weighting are
used to speedup the disjoint set algorithm and the algorithm complexity is
quasilinear. [3, 8, 9] use only total path compression in order to save memory.

 80% 20%

Tree
Computation

Tree
Transformation

Image
Restitution

- 1-D algorithms: it is a special category where the CCT is built on 1-D signal. Thus,
the pixel processing ordering is unnecessary and the tree can be built in linear
time [4]. These algorithms are extremely fast, but they cannot process 2-D data.
However, if tree merging is added [10], they are usable for any dimension, so we
have chosen this approach.

In order to accelerate the execution time, Meijster [10] studies the first
implementation of CCT computation on shared memory machines. Recently,
Wilkinson [5] has published a modification of the Meijster’s approach and has
demonstrated the computation performance on 3-D data. The principle consists of
image division into regular domains. A modification of Salembier’s algorithm [1] is
used to build a CCT of each domain independently. Then, the trees of the domains are
merged in a binary-tree fashion. See Table 1 which summarizes the complexity
analysis of the existing CCT computation algorithms (sequential and parallel).

Table 1. Complexity analysis. N is the total number of pixels in the image, G is the number of
grey levels of the image, α is a very slow-growing “diagonal inverse” of the Ackermann’s
function, α(1080) ≈ 4. For the Wilkinson’s algorithm, P is the number of processes

 Time complexity
Memory requirements

calculation hints
Data types

Salembier [1] O(NG) 4N + 3G + stack small int

Najman-Couprie [2] O(N α(N)) 7N + G + stack int/float

Berger [3] O(N log N) 4N + stack int/float

Levillain [12] O(NG log N) 2N + stack int/float

Menotti (1D) [4] O(N) 3N + G + stack int/float

Wilkinson (3D) [5]
(building + merging)

O(NG/P +
N 2/3G log N log P)

3N + 3G + stack small int

3 Mathematical background

Let us consider a function f : Z2 → R an image associated with 4-connectivity (can be
generalized to any dimension and connectivity), where below V = supp(f) denotes the
set of points (pixel coordinates) of the image and R is the real number set. We call a
k-level connected component (C ⊂ V) if all of the following conditions are met:
1. C is connected with regard to the 4-connectivity.
2. ∀ x ∈ C : f(x) ≥ k
3. No other point y ∈ V can be added to C without violating the conditions 1 or 2.

We call h(C) = min{f(x) ; x ∈ C} the altitude of component C. For each point x ∈ V
we define Cf(x) as the component of the image f, which has the altitude h(Cf(x)) = f(x)
and which contains the point x.

The connected components of the image may be organized, thanks to the inclusion
relation, to form a rooted tree structure called connected component tree: For each

two components C1, C2 of the image f, we say that C1 is the parent of C2 precisely if
C2 ⊂ C1 and there is no other component C3 of image f, such that C2 ⊂ C3 ⊂ C1.

We call the subset C' = { x ∈ C ; f(x) = h(C) } of component C as the core of the
component C. It is the set of points of the component C, which belong to no
descendant of C. Note that each point of V belongs to exactly one component core.

0 1 2

3 4 5

6 7 8

 {0,1,2,3,4,5,6,7,8}

{1,2,3,4,5,6,8}

{1,2,3,4,5,6}

{1,2,5}{6}

{2,5}

{2}

root 70

8

43

1

5

2

6

root

Fig. 2 Component trees: a) an example image f with points numbered in scan-line order; white
background represents the highest level of f. b) the component tree of the image f; the points
of the component’s core are underlined. c) the point-tree of the image f ; level roots are marked
with double circles

In our algorithm we use a memory-aware representation [10], [5] of the component
tree called point-tree [11]. The point-tree (PT) of the image f is a rooted tree, whose
nodes are points of the image f and where points of each component of the image f
form a subtree of PT. Note that there may be more than one valid point-tree
corresponding to a given image.

The edges of PT are represented by parent pointers stored in an array named
par : V → V ∪ {⊥} where ⊥ stands for null pointer. For each point x ∈ V, par[x] is
the parent of x if x is not the root of PT and par[x] = ⊥ if x is the root of PT. We
define f(⊥) = –∞.

It can be shown that for each point x ∈ V :
− f(par[x]) ≤ f(x)
− If f(par[x]) < f(x) then Cf(par[x]) is the parent component of Cf(x) and x is the root

of PT’s subtree composed of points of Cf(x). We say that x is the level root of the
component Cf(x) and of all its core’s points.

− If f(par[x]) = f(x) then Cf(par[x]) = Cf(x) and we say that x is not a level root.

4 New algorithm description

The algorithm proceeds in two steps: a partial point tree is computed independently
for each line (Algorithm 1) and then the partial trees of neighboring lines have to be
merged together.

Partial point-tree computation
Menotti’s 1-D algorithm was modified to produce a PT, which is suitable for

merging and parallelization, instead of a component tree structure and component
mapping. The algorithm processes the points of the line in a single linear scan from
left to right and stores the result as the point-tree to allow a subsequent merging. The
algorithm uses only a stack (LIFO) to store the points, whose parent pointers could not
be determined yet. The stack supports these operations:
− StackPush(x) : Adds the point x to the top of the stack.
− StackPop() : Removes one point from the top of the stack.
− StackLast() : Returns the point at the top of the stack without stack

modification or ⊥ if the stack is empty.
− StackEmpty() : Returns true if the stack is empty.

The first point of the line is a level root, because it is surely the leftmost point of
some component core. Variable r is initialized to this first point and the scan starts
from the second point of the line. Note that the leftmost point of each component core
is treated as a level root.

The following invariant holds during the scan: before and after each iteration of the
scan, i) the variable r holds the level root of the last processed point and ii) the stack
contains all level root ancestors of r encountered so far, ordered by their levels, the
highest level on the top of the stack.

The parent pointer of each point is assigned exactly once, just before the point is
dropped from the stack; from the variable r and the variable p used during the scan.
The parent pointer is always set to point to a level root, so a perfectly compressed
point-tree is produced.

A new point p is processed in each iteration of the scan. Its level f(p) is compared
to the level f(r). There are three possibilities:
− f(r) < f(p) : point p is the leftmost point of a new component core, so it is a level

root. Point r is a (possibly indirect) ancestor of p, because r is the level root of its
left neighbor. Current r is pushed to the stack and p is set as the new value of r. No
point is dropped, so no parent pointer is set.

− f(r) = f(p) : point p belongs to the same component core as the last processed point
and r is its level root, so r is assigned to par[p] and p is dropped.

− f(r) > f(p) : the component represented by point r is completed and its parent has to
be determined. Let q be the point on the top of the stack. Either p or q is the parent
of r, depending on their levels, so f(p) is compared to f(q). Again, there are three
possibilities:

− The stack is empty or f(q) < f(p) : point p is the leftmost point of a new
component core, so it is a level root. It is also the parent of r, so p is assigned
to par[r] and r is dropped. Point p is set as the new value of r.

− f(q) = f(p) : the points q and p belong to the same component core. The point
q is its level root and the parent of r, so q is assigned to both par[p] and
par[r] and both p and r are dropped. Point q is removed from the stack and
set as the new value of r.

− f(q) > f(p) : point q is the parent of r, so it is assigned to par[r] and r is
dropped. Point q is removed from the stack and set as the new value of r. But

now, f(r) is still greater than f(p). This means that the component represented
by the new value of r is completed and its parent has to be determined now.
This is done by repeating the decision process with the same p, the new value
of r and the new state of the stack.

After the scan finishes, r contains the level root of the last point of the line and all
its ancestors are in the stack. They are removed from the stack one by one and parent
pointers are set accordingly. The last point removed from the stack is the tree root.

Algorithm 1 1-D algorithm for computation of point-tree

V = {0 … W – 1} × {0 … H – 1}
line ∈ {0 … H – 1} is the number of the line to be processed
Vline = {0 … W – 1} × {line} = { (i, j) ∈ V ; j = line } is the set of points of one line
Input: image f : Vline → R
Output: point-tree par : Vline → Vline ∪ {⊥}
procedure build1D(line : integer) =
1 var r : point := (0, line) ;
2 for p : point := (1, line) ... (W - 1, line) do
3 if f(r) < f(p) then
4 StackPush(r) ;
5 r := p ;
6 elsif f(r) = f(p) then
7 par[p] := r ;
8 else loop
9 var q : point := StackLast() ;
10 if f(q) < f(p) then
11 par[r] := p ; r := p ;
12 break ;
13 elsif f(q) = f(p) then
14 par[r] := q ; par[p] := q ; r := q ;
15 StackPop() ; break ;
16 else
17 par[r] := q ; r := q ;
18 StackPop() ;
19 end; end; end; end;
20 while StackEmpty() = false do
21 par[r] := StackLast() ; r := StackLast() ;
22 StackPop() ;
23 end;
24 par[r] := ⊥ ; (* r is root *)
end;

Merging of partial point-trees
Generally speaking, we take two adjacent point-trees as input and modify their

parent pointers to create a single point-tree. The merging operation is done in
procedure connect(x, y), which is executed for each pair of points x and y, where x
is in the first point-tree, y is in the second point-tree and x and y are neighbors in 4-
connectivity sense. Procedure connect follows the parent pointer paths from x and y
respectively to the root of the tree and changes the parent pointers to form a single
path. The new path includes nodes visited along both paths in correct order of levels.
When the two parent pointer paths meet, the procedure is terminated. Note that the
principle is the same as used in [5], with some simplifications.

Algorithm 2 Merging process of two adjacent point-trees

The first point-tree starts at line a and ends at line border – 1, the second point-tree starts at line border
and ends at line b (0 ≤ a < border ≤ b < H)

Va,b = {0 … W – 1} × {a … b} = { (i, j) ∈ V ; a ≤ j ≤ b } is the set of points of the two trees
Input: image f : Va,b → R; point-tree par : Va,b → Va,b ∪ {⊥}
Output: point-tree par : Va,b → Va,b ∪ {⊥}

1 procedure levroot(x : point) returns point =
2 if f(x) = f(par[x]) then
3 par[x] := levroot(par[x]) ; return par[x] ;
4 else
5 return x ;
6 end; end;

7 procedure connect(x, y : point) =
8 x := levroot(x) ; y := levroot(y) ;
9 if f(y) > f(x) then swap(x, y) ; end;
10 while x ≠ y do
11 if par[x] = ⊥ then
12 par[x] := y ; x := y ;
13 else
14 var z := levroot(par[x]) ;
15 if f(z) > f(y) then
16 x := z ;
17 else
18 par[x] := y ; x := y ; y := z ;
19 end; end; end; end;

20 procedure merge(border : integer) =
21 for all neighbors x, y between lines (border – 1) and border do
22 connect(x, y) ;
23 end; end;

4.1 Concurrent implementation

Parallelism Maximization Strategy. The point-trees of individual lines are
independent after the building; there are no parent pointer links between the nodes of
different lines. To create a complete point-tree of the image, which consists of H lines, each
two adjacent lines have to be merged. When two lines merging started, two originally
independent point-trees become connected and a larger point-tree is formed. No other
process should work on the two trees being merged. To achieve maximal parallelism,
it is the best to merge point-trees of the same or similar sizes, whenever possible. For
this reason, each merge step of our algorithm merges two point-trees, which consist of
2k lines each, into one point-tree of 2k + 1 lines. Only if the height H of the image is not
a power of two, then the point-tree, which includes the last line of the image, may be
smaller than the point-tree which it is merged with.

The algorithm consists of H building operations and (H – 1) merging operations.
Their dependencies are shown in figure 3. Each building operation accepts one line of
the image, i.e. W × 1 pixels, n bits per pixel as the input and produces the point-tree of
the same size, m bits per parent pointer.

Merge
Build

Build

Merge
Build

Build

Merge
Build

Build

Merge
Build

Build

Merge

Merge

Merge

1 line
of image

W×1×n

Point-tree of 1 line

W×1×m
Point-tree of 2 lines

W×2×m

W×4×m

W×8×m

Merge
Build

Build

Merge
Build

Build

Merge
Build

Build

Merge
Build

Build

Merge

Merge

Merge

1 line
of image

W×1×n

Point-tree of 1 line

W×1×m
Point-tree of 2 lines

W×2×m

W×4×m

W×8×m

Fig. 3. Data dependency graph. a) Parallelism maximization strategy, b) Communication
minimization strategy. The enclosing polygons show which operations are done by a single
process

The algorithm is executed in P ∈ N (natural number) independent parallel
processes (threads). Numbered lines in a queue are fetched by the individual
processes. The queue is represented by a shared next_line counter. The counter has to
be read first and then incremented on each fetch. This is done by the synchronized
procedure get_next_line, where “Synchronized” means that if two processes
attempt to enter the procedure at the same time, one of them has to wait until the other
leaves the synchronized procedure. When a line is fetched by the process, the process
performs the building operation. Then the process proceeds to the cascade of merging
operations following the path from the build job to the right in the data dependency
graph. The process performs as many merging operations as possible without waiting.
Each merging job requires two inputs (two point-trees). One of the inputs is carried by
the process which is about to perform the merging job. The other input has to be
supplied by another process. The boolean array block_ready is used to keep track of
merging jobs which are ready to be done. An element of block_ready is true if the
corresponding merging job has at least one input ready. The process, which attempts
the merging, calls the synchronized procedure test_merge. This procedure reads
the previous value of the corresponding element of block_ready, which it will return,
and sets it true. If the read value is true (the process is the second one to attempt this
merging job), it means that the other input of the merging job is ready and the job is
performed by the process. If the read value is false (the process is the first one to
attempt the merging job), the other input is not ready yet, so the process leaves the
cascade of merging operations and fetches next unassigned line to be built. We can
see that each building job will be done exactly once, because each of them is fetched
by one process. Also each merging job will be done exactly once, because exactly one
process attempts each merging job as the second. If a process attempts to fetch next
unassigned line, but there are no more lines left, the process exits. The algorithm ends
when all processes exit.

Algorithm 3 Concurrent implementation

Input: image f : V → R
Output: point-tree par : V → V ∪ {⊥}
1 var next_line : integer := 0 ;
2 var block_ready[1..H] : boolean ; (elements initialized to false)
3 synchronized procedure get_next_line() returns integer =
4 if next_line < H then
5 return next_line++ ;
6 else
7 return -1 ;
8 end; end;

9 synchronized procedure test_merge(border : integer)

returns boolean =
10 var result : boolean := block_ready[border] ;
11 block_ready[border] := true ;
12 return result;
13 end;

14 process line_parallel_tree() =
15 while (var line := get_next_line()) != -1 do
16 build1D(line) ; (* Build partial tree*)
17 var block_no := line ;
18 var block_size := 1 ;
19 while block_size < H do (*Merge as deep as possible*)
20 block_no := block_no div 2 ;
21 block_size := block_size * 2 ;
22 var border := (block_no + 1/2) * block_size;
23 if border < H then
24 if test_merge(border) = true then
25 merge(border) ;
26 else
27 break ;
28 end; end; end; end; end;

Communication Minimization Strategy. The algorithm is executed in P ∈ N

(natural number) independent parallel processes (threads). The entire image is divided
into P roughly equal-sized blocks of approximately (H / P) lines (the numbers of lines
per block have to be integers). The data dependency graph is the same as for the line
parallel algorithm only if the block size is a power of 2 lines (Fig. 3b). If the block
size is not a power of 2 then the data dependency graph is slightly different. Each
block is assigned to one process. The process builds and merges all lines of the block
into the point-tree of the block, just like the line parallel algorithm running in a single
process does. It means that after building of a line, as many merging steps as possible
are done. Synchronization is no more necessary, because the job execution order is
known in advance. After the block was built and merged, it is merged with the other
blocks. If we consider processing of the block as a single building operation, the data
dependency graph applies to the merging of the blocks as for the line parallel
algorithm. One of the processes, which reach a merging operation, terminates and the
other process proceeds with merging. The final point-tree is done when last two
blocks are merged.

4.2 Time complexity and memory requirements

The time complexity of the building operation (procedure build1D) was already
analyzed in [4] and equals O(W).

For its memory requirements, let us consider that: no point can be inserted twice
into the stack; no two points simultaneously present in the stack can have the same
level; the last point is never inserted into the stack; the points with the highest level are
never inserted into the stack. Thus, the maximum stack size is min(W – 1, G – 1).

The merging operation time complexity was already analyzed by Wilkinson [5] and
is O(WG log N). The merging operation does not need any additional memory except
input and output buffers. The recursive procedure levroot needs a stack to store the
points for path compression. It is possible to avoid the need for stack by implementing this
procedure without recursion, but the parent pointers have to be read twice.

The total time complexity of the algorithm is dominated by the merging operations
and is O(NG log N) for the whole image with N pixels and G grey levels.

The total memory requirements are input buffer of N pixels, output buffer of N
memory pointers and a stack of size min(W – 1, G – 1).

5 Experimental results

The algorithm described in the previous section was implemented in C and
compiled using Visual C++ 2005 Express Edition. The benchmarks were run on two
different computers with 2 and 4 CPU cores:
− 2-core machine: Portable computer with Intel Pentium Dual-Core T2330

@ 1.6 GHz, 1 GB RAM, Windows XP Professional SP2
− 4-core machine: 2× dual-core AMD Opteron 280 @ 2.4 GHz, 16 GB ccNUMA

RAM, Windows Server 2003 R2
We measured the wall clock times (real time elapsed from start to end of the task)

of the two parallelization strategies (parallelism maximization and communication
minimization) for 1, 2, 4, 8, 16 threads on a test image of size 784×576 px (8 bits).

Wall clock time [ms]

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 threads

2 cores

Speedup

0.0

0.5

1.0

1.5

2.0

2.5

1 2 4 8 16 threads

2 cores

Fig. 4. Parallelism maximization strategy timings: a) Wall clock time versus number of threads,
b) Speedup with respect to the sequential algorithm versus number of threads.

Wall clock time [ms]

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 threads

2 cores

4 cores

Speedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 4 8 16 threads

2 cores

4 cores

Fig. 5. Communication minimization strategy timings: a) Wall clock time versus number of
threads, b) Speedup with respect to the sequential algorithm versus number of threads.

On the 2-core machine, we get maximal speedup 1.95 from 89.0 ms to 45.6 ms for
2 threads for the parallelism maximization strategy and the results for the
communication minimization strategy are very similar. On the 4-core machine, we get
maximal speedup 3.57 from 55.1 ms (0.122 µs/pixel) to 15.4 ms (0.034 µs/pixel) for 4
threads for the communication minimization strategy. Maximum speedup is obtained
when number of cores and threads match. Theoretical maximal speedup is 2.0 and 4.0
for 2 and 4 cores respectively. The numbers measured are less than theoretical
because of the workload imbalance and overhead.

The time increases roughly linearly with increasing width of the image.
Results obtained by Wilkinson on the 2× dual-core Opteron machine with 8 GB

RAM operating on a 5123 8-bit volumetric data set are as follows: Wall clock time for
1 thread was 73 s (0.54 µs/voxel), wall clock time for 64 threads was 13.7 s (0.102
µs/voxel), that gives the speedup 5.3.

6 Conclusions

We have designed a new parallel algorithm for CCT construction. The algorithm
design was focused on maximal parallelism. Both parallelization strategies minimize
the traffic between the execution units and the memory. The communication
minimization strategy also minimizes the traffic among the execution units, but its
disadvantage is the fixed process workload assignment. The parallelism maximization
strategy has advantage when the data stream is of serial form from the sensor, because
it takes the lines of the image from top to bottom, one by one. The parallelism
maximization strategy provides a usable workload balancing, but depends on a
significant amount of synchronization among processes.

The Salembier-based Wilkinson’s algorithm is slow when the difference of
neighbor levels is large. The new algorithm does not depend on absolute levels, so it is
able to process any pixel data type (including floating point representation) without
large performance loss, thanks to not using a hierarchical queue.

Wilkinson obtains the biggest speedup for number of threads far higher than
number of physical CPUs. He explains that by improvement of data locality due to

dividing of the image into smaller blocks. This does not apply to our algorithm,
because it proceeds by lines of size independent of number of threads, so best speedup
is obtained when number of threads equals number of physical cores. Additional
increase of thread count extends the time due to thread management overhead.

The new algorithm takes approximately 3 times less time to process one image
element compared to Wilkinson’s algorithm.

In the future we will evaluate a tradeoff between the presented strategies and
optimize it for the Cell platform, a powerful multiprocessor on a chip.

References

1. P. Salembier, A. Oliveras, and L. Garrido. Anti-extensive connected operators for image
and sequence processing. IEEE Trans. on Image Proc., 7(4):555–570, April 1998

2. L. Najman and M. Couprie. Building the component tree in quasi-linear time. IEEE
Transactions on Image Processing, 15/11: 3531–3539, 2006

3. C. Berger, Th. Géraud, R. Levillain, N. Widynski, A. Baillard, E. Bertin. Effective
component tree computation with application to pattern recognition in astronomical
imaging. ICIP 2007

4. D. Menotti, L. Najman and A. de Albuquerque Araújo. 1D Component Tree in Linear
Time and Space and its Application to Gray-Level Image Multithresholding. Proceedings
of the 8th International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil,
Oct. 10–13, 2007, MCT/INPE, v. 1, p. 437–448

5. M. H. F. Wilkinson, Hui Gao, W. H. Hesselink, Jan-Eppo Jonker and Arnold Meijster.
Concurrent Computation of Attribute Filters on Shared Memory Parallel Machines.
Submitted for Transactions on Pattern Analysis and Machine Intelligence, 2007

6. M. Couprie, L. Najman and G. Bertrand. Quasi-linear algorithms for the topological
watershed. Journal of Mathematical Imaging and Vision, Volume 22, Issue 2 - 3, May
2005, Pages 231 - 249

7. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM,
22: 215–225, 1975

8. N. Ngan, F. Contou-Carrère, B. Marcon, S. Guérin, E. Dokládalová, M. Akil. Efficient
hardware implementation of connected component tree algorithm. Workshop on Design
and Architectures for Signal and Image Processing, DASIP 2007, Grenoble, France.

9. C. Berger, N. Widynsky. Using connected operators to manipulate image components.
Report, LRDE Seminar, July 2005

10. A. Meijster. Efficient Sequential and Parallel Algorithms for Morphological Image
Processing. PhD thesis, Rijksuniversiteit Groningen.

11. Berger, Ch.; Geraud, T.; Levillain, R.; Widynski, N.; Baillard, A.; Bertin, E. Image
Processing, 2007. ICIP 2007. IEEE International Conference on Volume 4, Issue , Sept.
16 2007-Oct. 19 2007 Page(s):IV - 41 - IV – 44

12. B. Deloison. Recherche et développement en traitement d’image: Utilisation de l’arbre des
composantes pour la fusion d’images. Report from graduate project, ESIEE Paris, June 2007.

13. Chiang, Y.-J., Lenz, T., Lu, X., and Rote, G., Simple and optimal output sensitive
construction of contour trees using monotone paths. Comp.Geometry: Theory and
Applications, 30(2):165–195, 2005.

14. Mattes, J., Demongeot, J., Efficient algorithms to implement the confinement tree. In
LNCS:1953, pages 392-405. Springer, 2000.

