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1 Introduction

The challenge in embedded systems is to design more
and more complex applications while taking into ac-
count strong cost constraints such as financial costs,
consumption and footprint. To reduce hardware cost,
the automotive industry has chosen to use distributed
architectures made of ECUs (Electronic Control Unit)
linked together by networks such as CAN, FlexRay,
... [8]. Processors are placed near sensors and actua-
tors, sensors data may be used by many functions : the
number of sensors and the wiring may be reduced.

This increasing hardware complexity impact on
software complexity design : computations have to be
placed and scheduled on ECUs and communications
must also be scheduled on the network taking into ac-
count the real-time constraints.

The design of a real time control embedded system
usually starts by a modelling step where control en-
gineers describe mathematically the behaviour of the
system to be controlled (control law synthesis). The
behaviour is validated by simulation, then the control
laws are implemented on the hardware architecture by
computer engineers.

The software on each ECU is written and executed
on the architecture, then the system has to be validated.

In most cases, the obtained behavior of the system may
be quite different from the behavior simulated by con-
trol engineers.This difference is mainly due to the con-
trol laws real-time execution : computations and net-
work communications introduce variable delays which
are known to degrade control performances. To take
them into account, control laws have to be tuned and
the design cycle must be iterated until the behavior of
the system meets the design objectives. These numer-
ous iterations increase the design lifecycle time.

At the simulation step, the delays induced by real-
time implementation are not known. They depend
mainly on the scheduling algorithms, the priority
choices, the communication protocols and the low
level implementation mechanisms[3, 7]. Taking into
account these delays in the simulation step may help
to tune the control laws earlier and, by this way, may
decrease the number of iterations[6].

In this paper, we describe how a real-time dis-
tributed implementation may impact on control per-
formance. Then we show on a suspension car con-
troller design example how introducing implementa-
tion model in the simulation may help engineers to
improve the control law synthesis and may also help
to make implementation and hardware architecture de-
sign choices.

2 Control embedded system design

2.1 Control law design

Designing a control embedded system starts with mod-
elling. From a model of the system which have to
be controlled, control enginners define a mathemati-
cal model describing the behavior of the control sys-
tem. These model equations are called control laws.
This control law synthesis is usually based on conti-
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nous time control theory. To allow their execution on
computer embedded system architecures, control laws
have to be expressed in the discrete time domain[1].
Inputs (sensors) and outputs (actuators) signals are
supposed to be sampled synchronously at periodic
time stamps. Time elapsed between inputs and outputs
is not considered.

Input and output signals sampling frequencies must
be chosen according to system dynamics. This choice
is not unique, but too low sampling frequencies may
not allow good performances while high frequencies
may overload the processors. The lowest frequen-
cies allowing system to meet requirements is the best
choice. Usually, control engineers perform simula-
tions in order to validate that the system to be con-
trolled together with the discrete controller behave
as specified. Engineers often use scientific software
packages such as Matlab/Simulink or Scilab/Scicos,
providing powerful computing environments suited for
engineering and scientific applications design and sim-
ulation.

2.2 Control law discrete implementation

Computer engineers have to design the real time soft-
ware implementing the discrete control laws provided
by control enginers. This software must meet the real-
time constraints, i.e. it has to guarantee that inputs
and outputs are sampled periodically at chosen fre-
quencies, and guarantee that the time elapsed between
inputs and outputs is bounded.

Usually discrete control laws are implemented as
tasks, functions with real-time execution constraints
(period, deadline) and properties (execution duration,
memory used,. . . ). An execution order of a set of
task must be defined according to the task’s real-
time constraints and properties. This execution or-
der is called scheduling. Real-time computing the-
ory provides many schedule algorithms. Execution
priorities are assigned to the tasks, the highest prior-
ity task asking an execution is chosen to be executed.
The scheduling may be preemptive (a task execution
may be interrupted by a higher priority task) or non-
preemptive. Priority may be fixed (chosen before com-
piling) or dynamic (computed dynamically at execu-
tion).

In many embedded systems, the schedule of the set
of tasks is made at execution time by an RTOS (real-
time operating system) providing a scheduler featuring
preemptive scheduling.

2.3 Example : car suspension controller de-
sign

As an example of embedded system design, we focus
here on a controlled suspension car system. The car
body with its suspension is modelized, then a discrete
control law is designed and the behaviour is simulated.
Then an implementation of the control law is made.

2.3.1 The suspension control system

In this work, a seven degrees of freedom four-wheeled
model (figure 1) that was adopted from [5] is consid-
ered. In this model, the sprung mass (which models
the car body), is free to heave, roll and pitch. Note that
roll and pitch angles are assumed to be small in order
to obtain a linear model. The suspension system con-
nects the car body to the four wheels (front-left, front-
right, rear-left and rear-right unsprung masses), which
are free to bounce vertically with respect to the sprung
mass. A suspension element consists of a spring, a
shock absorber and a hydraulic actuator at each cor-
ner. The shock absorbers are modeled as linear viscous
dampers, and the tires are modeled as linear springs in
parallel to linear dampers.

In order to describe this system, fifteen variables
need to be considered : x1 the heave velocity of the
center of gravity of the sprung mass, x2 the pitch an-
gular velocity of the sprung mass, x3 the roll angular
velocity of the sprung mass, x4..7 the deflection of each
suspension, x8..11 the velocity of each unsprung mass
and x

′

12..15 the deflection of each tire.

Road disturbances acting on the four wheels consist
of height displacement inputs (xξ1 , xξ2 , xξ3 , xξ4) and
height velocity inputs (Vξ1 , Vξ2 , Vξ3 , Vξ4 ) defined with
respect to an inertial reference frame.

The suspension model has seven degrees of free-
dom. Consequently, only fourteen state variables are
needed to describe it. The extra variable can be elimi-
nated if the wheel deflections are expressed as a func-
tion of three state variables x12, x13 and x14 and of
the road disturbances xξ1 , xξ4 , xξ3 , xξ4 as illustrated
in [5].

2.3.2 Active suspension control law

The control design for an active suspension in a car
aims to maximize the driving comfort (as measured
by sprung mass accelerations) and the safety (as mea-
sured by tire load variations) under packaging con-
straints (as measured by suspension deflections). In
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Figure 1: Full vehicule model

this paper, a suspension controller using a state feed-
back LQR [1] design methodology is used. The con-
trol design methodology is described in [5]. In prac-
tice, it is not possible to measure all the state vari-
ables. That’s why full state observers are usually to
reconstruct the state vector, from a limited number of
measurements. In this paper, we assume that the sus-
pension deflections (x4, x5, x6 and x7) as well as the
unsprung mass velocities (x8, x9, x10 and x11) are
measured. The state vector is reconstructed using a
full state observer. The controller provides the four
(u1,u2,u3,u4) forces to be applied by the hydraulic ac-
tuators.

2.3.3 Simulations

In order to evaluate the performance of the designed
suspension controller, the left side of the car is sub-
jected to a “chuck hole” road disturbance [5] [2] at the
speed of 40 km/h, illustrated in figure 2. Simulation re-
sults are depicted in figures 3, 4 and 5. They indicate a
significant improvement in the control performance of
the active suspension with respect to the passive sus-
pension (smaller and better dumped velocities). In the
following, the performance of the implementation of
the suspension system will be studied. In order to eval-
uate it, we will only focus on heave velocity responses
to the chuck hole, because the conclusions that we will
get using this state variables are also valid for the other
state variables.

3 How real-time implementation
may impact controller perfor-
mances ?

Usually, the behaviour induced by the controller real-
time execution is far from the desired behaviour vali-
dated by simulation. This difference is due to the fact
that simulation models usually contain simplifications
of real-time implementation which doesn’t match the
control law design hypothesis (see §2.1): synchronous
strict periodic sampling of all inputs and actuations
(outputs), no delay between input sampling and ac-
tuation. This strong hypothesis lays down implicitly
to design real-time implementation matching null ex-
ecution duration constraints! But the discrete control
law execution spends time. Thus, the real-time im-
plementation introduce variable delays between inputs
sampling and actuations and jitter on sampling time
stamps. It is known that such jitter and delays impact
the control laws performances [4].

3.1 Jitter

In the real-time scheduling theory, the periodic task
model defines time intervals when a task should be ex-
ecuted: the task must start after its activation and must
end before its deadline. The max time spent to exe-
cute the task in each period is the charge (C) of the
task. The activation dates of a periodic task are equally
spaced from the period of the task (T) and a deadline
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Figure 2: Chuck hole road disturbance
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Figure 3: Heave velocity
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Figure 4: Roll angular

(D) is associated to each activation date. If all execu-
tions of all tasks meet these constraints, the scheduling
is validated. Although the activation af a task is strictly
periodic, this task model allows the task not to be exe-
cuted strictly periodically because the start of the task
may be delayed in order to execute a higher priority
task. Figure 6 shows two different acceptable sched-
ules of a periodic task T(C,P,D) in the usual case where
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Figure 5: Pitch angular

D=P. We suppose that this task implements a discrete
control law with an input sampling (at the begin of the
task execution), some computations, and an actuation
(at the end of the task execution). On the 1st execu-
tion case, input sampling and actuation are strictly pe-
riodic. On the 2nd execution case, input and output are
not regular : the time elapsed between two samplings
(or actuations) varies from C to 2P-C. This jitter is due
to the scheduling.
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Figure 6: Jitter and delay in periodic task scheduling

Jitter may also be caused by preemption. Figure 7
depicts the same execution case as the first one of Fig-
ure 6, but here the task is preempted. The preemp-
tion delays the execution end of the task. Because the
task is not preempted at each execution and because
the task may not be preempted by the same higher pri-
ority task, the delay may vary. This leads to add jitter
on actuation.

A scheduling is theoretically validated in the worst
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execution case by taking into account the max exe-
cution duration of each task. But in the real case,
a task may contain branching instructions as if-then-
else, thus the charge of a task may not be the same at
each execution. This is another cause of jitter.

P P P

a0 a1 a2 a3 an
d0 d1 d2 dn−1

task execution

input sampling 

P P P

tsn

t

t

s0 e0 s1 e1 s2 e2 s3 e3

actuation

l1 l2 l3

C C+l1 C+l2+l3

P+l1 P−l1+l2+l3 P−l2−l3

C
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Figure 7: Jitter and delay due to preemption

Assuming that the active suspension control law is
implemented in a single task, we have added a model
of input sampling and actuation jitter in the simula-
tion. The result of this simulation is shown Figure 8.
Although the simulation result is closed to the ideal
simulation one, it shows that the jitter inserted by the
real-time execution produces a small degradation on
the car suspension behaviour.
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Figure 8: Suspension car behaviour simulation with
jitter

3.2 Delays

In the control law synthesis step, the control engineers
assume that input and actuation are produced simul-
taneously. This hypothesis can not be fulfilled by the
real-time implementation, because a delay is inserted
between the input sampling and the actuation. This
delay which is not taken into account by Control En-
gineers may impact the control law performances.

This delay may best equal to the task execution du-
ration (C on Fig.6). It is usually increased by the task
preemption (Fig.7).

We have added a 7ms constant input/actuation delay
in the control law of the active car suspension. The ob-
tained simulation exhibits again a degradation on con-
trol performance.
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Figure 9: Suspension car behaviour simulation with
constant I/O delay

3.3 Distributed implementation

In order to bring the ECU nearer the sensors and ac-
tuators and thus reduce the wiring, the control laws
may be implemented on distributed architectures made
of ECUs linked by communication networks. In this
case, the control law may be split and the parts may
be distributed on many ECUs. This distributed im-
plementation implies network communications which
may also add jitter and delays in control laws and de-
grade the system performances. Here, we modelize
here the delays and jitters added in a control law by its
distributed implementation.

3.3.1 Synchronous versus Asynchronous Com-
munication

Data exchange between two tasks executed on two
ECUs must be supplied by a communication on the
network linking the ECUs. Different software mecha-
nisms may be used to carry such a communication.

Synchronous send A task can call a communication
send function from a communication library to gener-
ate the communication when the data is computed and
ready to send. We call this mechanism synchronous
send because it guarantees that the communication is
triggered after the production of the value to send.
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Asynchronous send A task can load the data to send
in a buffer and ask a communication task to periodi-
cally send the buffer contains on the network. In this
case, the send may be triggered by the communication
task just before the refreshment of the buffer by the
task which produces the data. Here, the data compu-
tation/send order is not guarantee, we call this mecha-
nism Asynchronous send.

RT TASK

MEMORY

COM

COM

RT TASK

DATA

DATA

DATA

DATA

COM TASK

ASYNCHRONOUS

SYNCHRONOUS

Figure 10: Send communication mechanisms

These two send mechanisms are depicted Figure 10.
The receive part of a communication may also be clas-
sified as above(Fig. 11).

Synchronous receive There is a synchronous re-
ceive when the reception of a data allows or triggs the
execution of the task which consumes the data. The
data receive/consumption order is guarantee.

Asynchronous receive Here, the data re-
ceive/consumption order is not guarantee. In this
case, a task may consume a data which has not been
refreshed by the communication.

COM
RT TASK

COM RT TASK
MEMORY

COM TASKDATA

SYNCHRONOUS

ASYNCHRONOUS

DATA

DATA

DATA

Figure 11: Receive communication mechanisms

3.3.2 Communications Models

As shown Figure 12, we can modelize 4 com-
munications schemes combining these syn-
chronous/asynchronous send and receive mechanisms.

As task execution, communications may insert jitter
and delays between inputs and actuation. They depend
on the communication scheme used. In each commu-
nication scheme, we can evaluate the time elapsed be-
tween the start of a task sending a data and the end of
a task receiving and consumming this data. This delay
depends on the execution duration of the two tasks, the
time needed for the communication itself (communi-
cation protocol, network rate ...) and the time spent by
the data in buffers (Asyn mechanisms). The tasks ex-
ecution duration and the communication duration are
the same whatever the chosen communication scheme.
The difference is due to the time spent by the data in
buffers.
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Figure 12: Communications schemes

Let’s consider an example of a control law imple-
mented as 3 tasks with the same period Te. A first
task (A ) implements the input sampling function. This
task is executed on a first ECU. The sampled data is
sent through a network COM1 ) to a task executed on
an another ECU. This second task (B ) sends the actua-
tion data computed (COM2 ) to a third task (C ) executed
on a third ECU. Task C implements the actuation part
of the control law (Fig 13).

For each communication scheme, we will now con-
sider the worst execution case which generates the
longest delay between the input-sampling (start of A )
and the actuation (end of C ). To simplify this example
for a didactic purpose, we assume that an ECU can not
compute a task and communicate at the same time.
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Figure 13: A control law distributed on 3 ECUs

Asyn-Asyn Communication In Asyn/Asyn com-
munication scheme, data may be sent just before bee-
ing refreshed and a task may read the buffer supposed
to contain the data just before its reception. Executions
order cannot be guarantee. Figure 14 shows the worst
case schedule leading to the max input/actuation delay.
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Figure 14: Worst case schedule with Asyn-Asyn com-
munications

C is executed just before the communication COM2 .
Thus, the actuation is performed using the value send
in the previous period. COM2 is triggered just be-
fore B execution, then the data which is sent has not
be refreshed yet . . . In this case, the exchanged data
spends nearly a time Te in each send/receive commu-
nication buffer. Consequently, the delay between the
input sampling and the actuation is just over 3Te .

Syn-Asyn Communication In this case, a data is
sent just after beeing computed : the data spends
nearly a time Te only in the receive communication
buffer. Then, the delay is now just over 2Te.

Asyn-Syn Communication This case is close to the
previous one, but here the data spends time only in
send communication buffer. Worst execution case is
also just over 2Te (Fig. 15

Syn-Syn Communication In Syn-Syn communica-
tion scheme, no time is spent by the data in commu-
nication buffers. Thus the delay can be defined as the
durations sum of each task and each communication
A + COM1 + B + COM2 + C (Fig.16).
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Asyn-Syn communications
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4 Improving the active car suspen-
sion control law design by inserting
implementation models in the sim-
ulation

We have chosen to implement the active car sus-
pension control law on a distributed architecture
composed of 5 ECUs: 4 small ECUs are based upon
a small cheap microcontroller, each one is dedicated
to a wheel (suspension deflection and unsprung mass
velocity sampling, hydraulic actuator driving). The
controller is computed on a more powerful ECU
where other tasks may also be executed. Sampled data
are sent to this ECU through a CAN bus (250kb/s).
Sampling period Ts is 12ms. The following table
sums up the execution durations of each function to
be executed :
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function execution duration

Deflection sampling 0.1ms
Velocity sampling + conversion 0.2ms
Controller 2ms
Hydraulic actuator driving 1ms

4.1 Synchronous implementation

We have defined a first implementation using exclu-
sively Syn-Syn communication. Figure 17 shows the
schedule of this implementation.
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Figure 17: Implementation schedule using syn-syn
communications

The results of the simulation are given by the Figure
18. The behaviour is less good than the one predicted
by the “ideal simulation” but still acceptable.
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Figure 18: Synchronous implementation simulation
result

4.2 Asynchronous implementation

The 4 small ECUs are realized by a supplier. The con-
troller is implemented by the car manufacturer on a
more powerful ECU already used for other function-
nalities. The software executed on the small ECUs is
written by the supplier following the car manufacturer
specifications. In this case, it may be difficult to syn-
chronize computation tasks and communications in or-
der to guarantee Syn-Syn communications. This leads
to choose a non-synchronous implementation easier to
set.

On the 4 small ECUs, strong cost constraints en-
forces not to use RTOS services. Thus, the imple-
mentation is based upon the periodic execution of
the following sequence: deflection sampling, veloc-
ity sampling, sending the deflection and velocitie val-
ues on the CAN bus, Hydraulic actuator driving (Syn-
chronous send). Each 12ms a timer triggers an inter-
ruption which start the execution of this sequence. The
reception of a CAN message containing the actuation
value triggers an interruption which stores the received
value in a buffer (Asynchronous receive). On the fifth
ECU, the controller is implemented as a task han-
dled by an RTOS. CAN communications are handled
by a specific task (Asynchronous send and receive).
This second implementation has been modelized using
Syn-Asyn and Asyn-Asyn communication mechanism
models.
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Figure 19: Asynchronous implementation simulation
result

The simulation (Fig.19) shows that the impact of
this new implementaton on the control behaviour is
significant and it may not be acceptable. To enhance
the performances of this second implementation, Con-
trol Engineers may choose to reduce the sampling and
actuation period. The simulation shows that a control
law discretized with a 3ms period allows to obtain per-
formances close to the synchronous implementation
ones (Fig.20). But, the real-time execution of this new
control law requires 4 times more processor and net-
work ressources.

5 Conclusion and work in progress

In that paper, we have described how real-time
implementation mechanisms (computation durations,
scheduling, communications,. . . ) could generate de-
lays and jitters which degrade the control law per-
formances. Adding implementation models in simu-
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Figure 20: new control law simulation result

lations allows control engineers to take into account
this degradation and helps them to better tune the
control law parameters. We have illustrated this ap-
proach by an active car suspension controller design
example. On the example, this enhanced simulation
has shown that a synchronous distributed implementa-
tion required less resources at execution than an asyn-
chronous one. Here, implementation models must be
described and added to the control law manually but
we are currently working on a tool that can do it au-
tomatically. We hope, by this way, to reduce signif-
icantly the design lifecycle of control embedded sys-
tems.
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