

A METHODOLOGY TO REDUCE THE DESIGN LIFECYCLE OF REAL-TIME
EMBEDDED CONTROL SYSTEMS

Rémy KOCIK

ESIEE, Cité Descartes - BP 99 - 2, BD Blaise-Pascal
93162 Noisy-le-Grand CEDEX – France

E-Mail : kocikr@esiee.fr

Yves SOREL
INRIA Rocquencourt

78152 Le Chesnay CEDEX
E-Mail : yves.sorel@inria.fr

KEYWORDS

Control Systems, Real-time, Multiprocessors, Hybrid
Simulation, Computer Aided Design

ABSTRACT

There are two gaps in the typical design V-process used for
real-time embedded control systems. The first one is due to
the manual translation of control laws into a software
specification; the second one is due to the manual
implementation of this specification onto distributed
architecture while satisfying real-time constraints. Indeed, the
correctness and efficiency of these two translations mainly
rely on the skill of engineers who are subject to errors, the
latter requiring many design process iterations to be
corrected. We propose to fill the first gap between the
modeling and the specification phases, firstly by linking the
terminologies used by the two communities involved, and
secondly by interfacing Scicos a hybrid simulation tool with
SynDEx a specification and optimized implementation tool.
The second gap is actually filled by SynDEx itself which
assists the designer in implementing the control laws onto
distributed architecture with the help of optimization
heuristics and automatic code generation. We illustrate the
proposed approach through a didactic example of inverse
pendulum control system.

CONTROL EMBEDDED SYSTEMS DESIGN
LIFECYCLE

Designing control embedded systems requires to solve many
hardware and software problems: complex application
algorithms must be implemented onto heterogeneous
distributed architectures composed of processors (DSP,
RISC) and specific integrated circuits (ASIC, FPGA) all
together interconnected. In order to deal with this
complexity, methods are often based on hierarchical design
allowing to describe the system as a set of simplest, and
easiest to design sub-systems. These methods are applied in
the typical development lifecycle called ``V-process''. It
allows to build a system starting from an abstract description
to an actual product which is validated by a step by step top-
down and then bottom-up design flow (Calvez 1993).

The top-down design is decomposed in three main phases:
modeling, specification and implementation. The bottom-up
design is decomposed in three validation phases: unit test,
integration test and validation test of the system (see Figure
1). This V-process can be used both for hardware and

software designs. In this paper, we focus on the software
design.

validationmodeling

implementation
unit

test

specification integration

Figure 1: V-Process for Embedded Control System Design

Modeling corresponds to the mathematical description of the
behaviour the system must conform to. Software
specification consists in a high level description of the
algorithms which implement the mathematical equations
resulting from the modeling phase, and a description of the
implementation constraints, i.e. real-time and hardware
constraints. The software is actually written in the
implementation phase in order to ensure that the algorithms
will be computed on the architecture meeting the
implementation constraints.

The first validation phase in the development process is the
unit test which is often long and tedious. It consists in
verifying that each software function implementing the
algorithms are correctly written and perform right. When all
the functions are debugged and separately validated, the
integration phase verifies that the set of all the functions
behave as defined by the model. If not, specification has to
be modified. The last phase, validation, consists in verifying
that the application behaviour is consistent with the
requirements (customer's specification). If not, the model has
to be modified, and usually refined. In this case the V-
process is iterated as long as necessary.

GAP IN THE V-PROCESS

In the development process of a control system, control
engineers define the system model and computer science
engineers are in charge of the specification and
implementation part. Both have to collaborate in the
specification phase. This is an important phase where the
mathematical model is transformed in a computing model.
Problems involved by these two models are different and

errors due to misunderstanding between control engineers
and computer science engineers may appear in this
transformation. These errors may have impacts up to the
implementation phase and then be only detected during the
validation phase. Thus, development lifecycle time may be
strongly increased due to these numerous backtrackings.

In this paper, we first describe, using control engineer
terminology the modeling phase based on control
terminology. Then, we explain using real-time computing
terminology the implementation phase of the control models.
Finally the links between both terminologies are made in
order to reduce the gap between these two communities.

The V-process has shown a good efficiency in the design of
many applications. But their growing complexity leads to an
important development cost rise which became an important
part of the final product cost. Thus, time spent by engineers
in writing and debugging software code, is the most
important part in the design process. In order to ensure
competitiveness of products, it is necessary to minimize the
software development lifecycle by reducing the duration of
each phase, and by minimizing the number of iterations in
the global V-process.

Tools based on formal languages (Halbwachs 1993) are
intended to improve the global process. Indeed, these
languages rely on rigorous specification based on
mathematical rules. This makes possible specification,
verifications, and automatic code generation such that the
number of iterations in the V-process is reduced because
verifications allow to detect more early specification errors.
The automatic generation of a code consistent with the
verified specification allows also to reduce tests and debug.

In this context, the AAA methodology (Algorithm
Architecture Adequation) based on a graph formalism as
been developed to optimize the implementation of
application algorithms onto distributed architectures while
satisfying real-time constraints (Sorel 1994). The system
level CAD tool SynDEx (www.syndex.org) (Grandpierre
and al. 1999) which relies on this methodology allows to
quickly develop complex applications such that, for example,
an automatic driving application for the CyCab an electrical
vehicle based on a distributed architecture involving several
MPC555 microcontrollers interconnected through a CAN
bus (Kocik and Sorel 1998). This experience has shown the
benefits that this methodology can bring for the design of
complex real-time applications.

Nevertheless, this methodology takes into account only the
specification and implementation part of the V-process, and
there is a gap between the modeling and specification phases
which may introduce errors very early in the development
process. In industry this translation from modeling to
specification and implementation usually relies on the skill of
only few peoples. It is necessary to be vigilant because errors
introduced at this level may have consequences along the
development process, and are often only detected during the
validation phase. Thus, correcting the error imposes a
complete iteration of the development process.

Most errors usually occur during the controller model design,
these errors being introduced by the translation of this model
into its software specification. In order to reduce errors, to
enhance ``traceability'', and to minimize the number of
development process iterations we propose to automatically
translate models into software specifications. In the last part
of this paper, we show how interfacing Scicos
(www.scicos.org), a hybrid dynamic systems modeler
and simulator, with SynDEx allows to achieve this goal.

CONTROL SYSTEM MODELING

The job of control engineers is to build a physical system
able to keep under control the evolution of an other physical
system called plant. The latter may possibly be composed of
mechanical and/or electrical and/or chemical components.
First the control engineer has to describe with mathematical
equations the interactions between these components.
According to this mathematical model of plant, he can
predict its evolution when it is submitted to external control
actions. Then, he can give a mathematical model, called
control law, of control actions to be applied to the plant. A
controller which purpose is to physically perform the control
laws, has to be build and to be connected to the plant in order
to control it. The plant (system whose we want to control the
evolution) and the controller (system which has to act on the
plant) linked together, make a system that is called control
system (Figure 2).

PLANT

CONTROLLER

PLANT MODEL

CONTROL LAWS

MATHEMATICAL DESCRIPTIONPHYSICAL SYSTEM

1: describe plant model

2: describe
controller
model

3: design the controller

Figure 2: Control System Design

A complex controller can be designed from the composition
of several basic control laws such as single-input-single-
output controller. Its input is called the reference that the
plant as to reach. Its output is called control which is applied
to the plant in order to ensure that the plant evolves towards
the reference.

Control systems are usually loopback systems. Thanks to a
permanent observation of the plant evolution through a
feedback issued from the output of the plant, the control
system is able to remove external disturbance (Ogata 1970).

DIGITAL CONTROLLER

Sampled Control Law

When the plant is complex, it can be necessary to use a
computer to perform in real-time the control laws producing
actions applied to it. This solution may reduce the costs, and

moreover increase the performances of the system (Ogata
1987).

The implementation of a control law by a computer system
requires to discretize input and output of the plant (Landau
1988). Thus, interactions between the computer and the
plant are made using transductors. A feedback signal is
produced by a sensor, which measures the amplitude of
physical phenomenon and translates it into an electrical
signal sampled by an analog to digital converter (ADC). The
computed output is a digital signal which is converted to an
electrical analog signal by a digital to analog converter
(DAC) before being applied to an actuator. Its role consist in
converting the electrical signal into an other physical
phenomenon able to control the plant evolution (Figure 3)
(Astrom and Wittenmark 1984).

actuator sensor+
-

error

feedback

Reference

DIGITAL CONTROLLER

C1

C2
sn

C.A.N

C.N.A

controln

plant
s

PLANT

Figure 3: Computer Loopback System

The control law supplying that output signal from feedback
and reference inputs is described by an algorithm
implemented in a program executed on a computer. The
computer seen, by the control engineer, as a simple element
of the controller, is the center of interest of computer science
engineers. From his point of view, the computer science
engineer has to design an application made with a computer
system and a physical environment both interacting. This
system is composed of a computer and a set of programs,
called software, that it will execute. The environment is
defined as the set of all the physical elements which are
external to the computer system. The frontier between the
environment and the computer system is often difficult to
establish. This is the reason why we choose here that all the
physical components which can be programmed (processors,
network, memory, input/output devices, ...) are parts of the
computer system, whereas all the physical components which
cannot be programmed are parts of the environment. The
latter components, except the ADC and DAC ones, are seen
by control engineers as the plant.

The computer system has to ensure that the plant behaves
according to the control laws defined by the control engineer
in the modeling phase. It has to interact permanently with its
environment: the feedback and reference sampled input
values are input events on which computations are performed
producing output events which are discrete values. That is
the reason why this kind of computer system is also called
reactive system (Harel and Pnueli 1985).

The correctness of an actuation usually depends on the time
elapsed between the generation of an output event and the
input event which has triggered it. In this kind of systems,
this time interval have to be bounded. Such applications are

called real-time applications, the time requirements are
called real-time constraints. In some applications, it is
possible to accept sometimes that some real-time constraints
are not always met, but usually these requirements are critical
and have to be imperatively met. The main difficulty is to
design a predictable real-time system guaranteeing that all
the critical real-time constraints are always satisfied and the
overtaking of non-critical real-time constraints will remain
bounded, and casual (Le Lann 1990; Stankovic and
Ramamritham 1993).

Specification

Specification corresponds to a high level software and
hardware description (Calvez 1993). In the case of real-time
systems these two aspects are strongly linked. In order to
design the software, it is needed to specify the algorithms to
be computed, the hardware architecture which will execute
the algorithms, and the real-time constraints that must be
satisfied (Mathai 1996).

Real-time Constraints
The discretization and digital implementation of control laws
have some consequences on modeling. The control engineer
has to choose sampling frequencies for each input and each
output of the system (control, s and reference in Figure 3).
As a general rule, in order to simplify complex computations
induced by control laws discretization, the control engineer
assumes that all the signals are periodically sampled. For the
same reason, he assumes that input and output signals are
sampled at the same time instant (Ogata 1987). Control
theory books shows that this choice is empirical and relies on
the skill of control engineers. The sampling frequency choice
is translated during the implementation by a constraint
imposed to the input events rate that the real-time system
may accept. This constraint is called input rate. A latency
constraint is also imposed to the real-time system. It is a
boundary on the time interval between an input event arrival
and the production of the corresponding output event. The
goal of this constraint is to guarantee the response time of the
system, an important quality criteria from the control
engineer point of view. It has been shown, under simplifying
hypothesis, that this response time is proportional to the
computation latency added with a delay Te\2 due to sampling
performed at 1\Te frequency (Phillips and Troy 1984).

Algorithm Specification
Taking into account the infinite iteration due to the
interactions between the real-time system and its
environment (the number of iterations cannot be bounded,
considered as infinite) the typical definition of an algorithm
extended such as an infinite sequence of operations
computed in a finite time on a finite hardware. In this way, an
algorithm is seen as a finite sequence of operations computed
in a finite time on a finite hardware, but infinitely repeated.
The execution of every sequence of operations is triggered
by input events which may be periodic or aperiodic.
Complex real-time systems involve two kinds of algorithms:
data processing and state machine. Data processing
algorithms describe control actions applied to the plant. They
represent the computations the control laws perform on data
(PID corrector, filter,...) considered as periodic events

because they are sampled at the input rate. State machine
algorithms define in which order data processing algorithms
must be executed according to the current state and aperiodic
input events.

Hardware Specification
Embedded applications are subject to strong cost constraints
(financial cost, dimensions, electrical consumption). To meet
these constraints, new hardware architectures have been
proposed. For example, in automotive industry where
competitivity is particularly hard these new technologies
have contributed to reduce the amount of wiring thanks to the
integration of sensors and actuators near to the processor,
and to data multiplexing on serial bus. This lead to
heterogenous distributed architectures with low cost
components of the shelf. Computers are build with
microcontrollers to perform evolving functions, and with
ASICS, and/or FPGA to perform some specific functions
with only few evolutions in the product life. Communications
between processors are supported by low cost serial buses
(like VAN, CAN, TTP, FlexRay,…) well suited for disturbed
environment.

DESIGN LIFECYCLE REDUCING

In order to meet the implementation constraints and to avoid
gaps between all the V-process phases and thus reduce
design costs we propose a methodology based on the
cooperation of two tools: Scicos for modeling and hybrid
simulation, and SynDEx for specification and distributed
implementation.

Specification

In computer control systems sampling and quantifying
operations, needed for the discretization of analog signals,
may introduce some errors which tend to degrade system
performances. For the same performance level, if we want to
take into account these errors, it is more complex to define
the control law for a computer system than for an analog one.
The modeling of a discretized system is more complex than
the modeling of a continuous system for which control theory
brings numerous mathematical tools.

In order to simplify the design, the control engineer usually
studies a continuous model of the controller rather than a
discrete one (Astrom and Wittenmark 1984). Then, this
continuous model is discretized in order to allow its
implementation on a computer. Thus, an hybrid simulation,
i.e. the simulation of a continuous system (the plant) linked
with a discrete real-time system is mandatory to validate the
model used to design the real-time system. This simulation
allows to tune the control laws in order to take into account
approximations done in the continuous model.
Scicos (Nikoukha and Steer 1999) has been designed for this
purpose, it allows an hybrid simulation taking into account
the sampling frequencies of analog signals.

Specification and Optimized Algorithms Implementation

Discretized control laws and continuous plant models are
described in Scicos with graphs similar to block diagram well

known by control engineers. Such a graph representing a
discretized control laws is extracted from Scicos and
translated into a SynDEx graph (Djenidi and al. 1999). In
this way, the algorithm specification conforms to the model,
it is still not necessary to spent any time for the control laws
specification, and only hardware architecture description is
now required. SynDEx allows to perform this hardware
specification, and when both algorithm (control laws) and
architecture are specified it allows to execute the adequation,
that is to say to execute heuristics which optimize the
implementation of the algorithm onto the architecture and
automatically generates the corresponding code that will be
executed in real-time. Actually, interfacing Scicos with
SynDEx allows to cover the complete design process.

Hybrid Simulation with Delays

Hybrid simulation, to be close to reality, needs to take into
account delays introduced in the control laws by computation
and communication durations (latency). These delays may
impact on system stability(Torngren 1990). They depend on
the implementation, that is to say on the allocation
(distribution) and the scheduling of functions, associated to
each block of the graph describing the control laws, onto
processors.

Usually, in the specification phase each block is translated
into a task, function with real-time execution constraints and
properties (execution periods, priority, deadlines,…). Then,
the schedule of this set of task is made at execution time (on-
line scheduling) by an RTOS (real-time operating system)
according to the properties of the tasks (Timmerman 1999).
In this approach it is difficult to predict computing latency,
and consequently it is not possible to easily take into account
delays in the hybrid simulation. This problem can be solved
by interfacing Scicos and SynDEx. Indeed, SynDEx is able
to compute an adequation which is an optimized distribution
(spatial allocation of CPU resources) and scheduling of the
blocks (called in this context operations) of the algorithm
onto the hardware architecture. Thanks to a good knowledge
of the architecture (number of programmable and non
programmable components, number of communication
media) and to the knowledge of the maximum execution
duration of each operation depending on the component able
to execute it, SynDEx can compute and visualize a prediction
of the optimized distribution and scheduling. This accurate
prediction allows to verify whether real-time constraints are
met or not, and also allows to provide back, in the hybrid
simulation, the delays due to computations and
communications. Thus, it is possible to simulate the hybrid
system with Scicos in order to verify that response time,
stability and others requirements are met in spite of these
delays.

Example

In order to show the benefits of this approach we illustrate it
with a didactic example of an inverse pendulum control
system. The inverse pendulum is a system composed of a cart
(mass M) on which a bar (mass m, length l) is linked. The
bar can rotate around its extremity. The cart stays on a

inclined plane. The goal is to stabilize the cart at the origin
position O (Figure 4).

zu(t)

0 ϕ

θ

Figure 4: Inverse Pendulum Stabilization

We suppose that some sensors provide the angular position θ
and the linear position z of the cart on the plane. The control
action is a translation force u(t) produced by an electrical
motor.

Modeling and Simulation
The first phase corresponds to the modeling and the
simulation of the system in order to verify that the goal is
met. Figure 5 shows how the modeling was performed with
Scicos. The block named cart is a mathematical continuous
model of the cart. This block is a function written in C or
Fortran code and/or with Scicos library blocks. This model
estimates z and θ from the angle φ (0.001 radians here) and
from the control action u(t) applied to it. The sensor block
models two sensors acquiring z and θ. The block named
actuator is the electrical motor model. The control
block is the discretized model of the controller. It describes
the algorithms which will be executed in real-time.

Figure 5: Scicos Graph

The sampling period of its inputs is 10ms, it is specified by a
clock signal connected to its activation input port. The
control engineer has used here a hierarchical description, the
control block is a Scicos super-block which groups many
C or Scicos blocks. Finally, a specific block (icon showing a
2D graph) allows to display a simulation graph of the z
position and of the θ angle evolution.

Control Algorithms Extraction
When hybrid simulation shows that the control system is
properly designed, the engineer may extract from Scicos the

controller algorithms by selecting with the mouse the
involved region (Figure 6).

Figure 6: Controller Extraction

We can see that the control engineer chose here to design the
control law as a matrix computation given by a state space
representation. This Scicos graph region of the discretized
control law can then be automatically translated into a
SynDEx algorithm graph.

Real-time System Specification
The algorithm graph extracted from Scicos is translated in
the SynDEx algorithm syntax. Now, the user must specify the
architecture graph describing the hardware architecture of the
real-time system and he must provide to SynDEx the worst
execution duration of each operation of the algorithm graph.
These durations can be, in a first step, estimated by engineers
or they can be measured by SynDEx after a first execution of
the automatically generated code.

Figure 7: SynDEx Software and Hardware Graphs

The Figure 7 shows the SynDEx graphical interface where
both algorithm and architecture graphs are displayed. On the
algorithm graph (upper part), we can see the Scicos blocks
AxplusBu and CxplusDu performing the matrix
computation. The block called thetaEtz corresponds to
the sampling of the inputs sensors while the block called
motor drives the motor. The block mem specify the scicos
block 1/Z. For demonstration purpose, we have supposed
that the hardware architecture is made of two processors
linked together by a communication media called
direct_lnk (Figure 7 lower part). Sensors are physically
linked to the processor called root, the motor is physically
linked through a power amplifier on the processor called
Opr2.

Adequation and Temporal Simulation
From this specification, SynDEx can perform the adequation
and display a temporal prediction of the algorithm execution
onto the hardware architecture (Figure 8). Each column
represents an execution sequence displaying one iteration of
the operations distributed onto a processor, or of the data
dependences distributed onto a communication media. In our
case, there is one computing sequence on the root
processor, another computing sequence on the processor
opr2 and a communication sequence on direct_link.
The vertical axis represents the time evolution. It can be
noticed that the complete execution of all the operations and
all the communications needed is estimated to 3ms (3060).
Thus, we can verify that the architecture can meet the
temporal constraint of the input rate (10ms) given by the
sampling period chosen for z and θ.

Figure 8: SynDEx Timing Simulation

Hybrid Simulation Taking into Account Delays
The computation latency (3ms) given by the SynDEx timing
simulation is the delay between the sampling of z and θ and
the u(t) output. This delay can be introduced in the Scicos
graph in order to perform a more accurate hybrid simulation.
The Figure 9 shows the first simulation made without any
delay. It exhibits that the control law discretized with a 10ms
sampling period allows to stabilize the inverse-pendulum at
O. Figure 11 and Figure 10 are the simulation results taking
into account the 3ms delay. The first one (Figure 10) shows

that with a 10ms sampling period, the system with the delay
is no more stable. The second one (Figure 11) validates the
control system stability with a control law discretized with a
8ms sampling period despite of the delay.

Figure 9: Simulation with 10ms Sampling Period, No
Input/Output Delay

Figure 10: 10ms Sampling Period with 3ms Delay

Figure 11: 8ms Sampling Period with 3ms Delay

Automatic Code Generation
When both hybrid (Scicos) and temporal (SynDEx)
simulations show that the performances are satisfied, it is
possible with SynDEx to generate the code that will actually
be executed on each processors. SynDEx produces an
executive involving inter processor communications which
guarantees that the functions calls associated to each
operation of the algorithm graph, and to each SEND and
RECEIVE communication primitives, follows the computed
schedule. The software engineer just has to provide the input
and output functions (thetaEtz and motor). It is possible
to reuse the C blocks used in Scicos to describe the control
system: thus, the code that have been used for simulation is
the same that the one used at execution time in the real-time
system.

New Reduced Lifecycle

Figure 12 shows the new reduced lifecycle obtained using
this methodology. Each phase is validated by simulation or
verification before going to next the phase. Manual
translation of models into specifications are minimized in
order to avoid errors. We hope by this way to lead to a
lifecycle closed to an ideal waterfall process without rise:
each phase is validated before going to the next one.

modeling hybrid
simulation

specification

formal
verification

automatic

validation

temporal
simulation

implementation

Figure 12: Reduced Design Lifecycle

CONCLUSION AND WORK IN PROGRESS

In this paper, we have described a methodology able to
reduce the lifecycle of control embedded control systems.
With a didactic example, we have shown that using Scicos
for hybrid simulation taking into account the input-output
delays predicted by SynDEx may reduce significantly the
backtracking during the design V-process. Actually, the
automatic code generation for heterogenous distributed
architectures performed by SynDEx also decrease the design
lifecycle. Presently, delays must be determined and
introduced manually in Scicos. We are now working on
SynDEx and Scicos tools in order to do this automatically.
Morever, this new approach is actually evaluated on the
design of a complex industrial automotive application.

Astrom, K.J. and Wittenmark, B. 1984. Computer Controlled

Systems: Theory and Design. Prentice-Hall Inter-national.
Calvez, J. P. 1993. A Specification And Design Methodology. John

Wiley Publisher.
Djenidi, R.; Lavarenne, C.; Nikoukha, R.; Sorel, Y.; and Steer, S.

1999. “From hybrid system simulation to real-time
implementation”. In 11th European Simulation Symposium and
Exhibition (Erlangen-Nuremberg, Oct.).

Grandpierre, T. ; Lavarenne, C. ; and Sorel, Y. 1999. “Optimized
rapid prototyping for real time embedded heterogeneous
multiprocessors”. In CODES'99 7th International Workshop on
Hardware/Software Co-Design (Rome).

Halbwachs, N. 1993. Synchronous programming of reactive
systems. Kluwer Academic Pub.

Harel, D. and Pnueli, A. 1985. “On the development of reactive
systems”. In Logics and Models of Concurrent Systems,
Springer-Verlag, Ed., k. r. apt ed., vol. 13 of NATO ASI. New
York, pp. 477-498.

Kocik, R. and Sorel, Y. 1998. “A methodology to design and
prototype optimized embedded robotic systems”. In 2nd IMACS
International Multiconference CESA'98 (Hammamet, Tunisia,
April).

Landau, I.D. 1988. Identification et commande des systèmes.
Hermes, 1988.

Le Lann, G. 1990. “Critical issues for the development of
distributed real-time computing systems”. Research Report
1274, INRIA, (August).

Mathai, J. 1996. Real-time Systems: Specification, Verification and
Analysis. Prentice Hall.

Nikoukha, R. and Steer, S. 1999. “Scicos : A hybrid system
formalism”. In I1 th European Simulation Symposium
(Erlangen, Germany, october).

Ogata, K. 1970. Modern Control Engineering. Prentice-Hall
International Editions.

Ogata, K. 1987. Discrete-Time Control Systems. Prentice-Hall
International Editions.

Phillips, C.L. and Troy, N.H. 1984. Digital Control System :
Analysis and Design. Prentice-Hall International Editions.

Sorel, Y. 1994. “Massively parallel computing systems with real
time constraints, the algorithm architecture adequation". In
Methodology Proc. of Massively Parallel Computing Systems
Conference (Italy).

Stankovic, J. A. and Ramamritham, K. 1993. Advances in Real-
Time Systems. IEEE computer Society Press.

Timmerman, M. 1999. “Rtos market survey preliminary results”.
Real Time magazine (march).

Torngren, M. 1990. “Fundamentals of implementing real-time
control applications in distributed computer systems”. In Real-
Tune Systems. Kluwer Academic, pp. 219-250.

	KEYWORDS
	ABSTRACT
	CONTROL EMBEDDED SYSTEMS DESIGN LIFECYCLE
	GAP IN THE V-PROCESS
	CONTROL SYSTEM MODELING
	DIGITAL CONTROLLER
	Sampled Control Law
	Specification
	Hardware Specification

	DESIGN LIFECYCLE REDUCING
	Specification
	Specification and Optimized Algorithms Implementation
	Hybrid Simulation with Delays
	Example
	Modeling and Simulation

	New Reduced Lifecycle

	CONCLUSION AND WORK IN PROGRESS

