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2D discrete lines

Straight line

Definition (Straight line)

A line in the Euclidean space R2 is defined by

L = {(x , y) ∈ R2 : αx + βy + γ = 0}

where α, β, γ ∈ R.

In general, we have a normalization such that |α|+ |β| = 1,
α2 + β2 = 1.
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2D discrete lines

Discretization of straight line

Definition (Discrete line)

The discrete line of L in Z2 is defined by

D(L) = {(p, q) ∈ Z2 : 0 ≤ αp + βq + γ′ ≤ ω}

where ω is called the thickness.

The values of γ′ and ω depend on the model of discretization.

Grid-intersection: grid points closest to
the intersections with the grid lines

γ′ = γ + max(|α|,|β|)
2 , ω = max(|α|, |β|).

Super-cover (outer Jordan): 2-cells
intersecting with the line

γ′ = γ + |α|+|β|+1
2 , ω = |α|+ |β|+ 1.

Gauss (half-plane): 2-cells with center
points in the half-plane
γ′ = γ, ω decides the m-connectedness
of the half-plane border:
ω = max(|α|, |β|)− 1 for m = 8.
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2D discrete lines

Freeman code

Freeman code Chain code: 7500013444
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2D discrete lines

Properties of discrete lines

Criteria of Freeman (1974)

For discrete lines (by grid-intersection discretization), the Freeman
code verify the following three properties:

1 the code contains at most two different values;

2 those two values differ at most by one unit (modulo 8) ;

3 one of the two values appears isolatedly and its appearances are
uniformly spaced in the code.

Freeman code Discrete line : 10101001010...
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2D discrete lines

Properties of discrete lines (cont.)

Definition (Chord property (Rosenfeld, 1974))

A set of discrete points X satisfies the chord property if for every pair
of points p and q of X and for every point r = (rx , ry ) of the real
segment between p and q, there exists a point s = (sx , sy ) of X such
that max(|sx − rx |, |sy − ry |) < 1.

It proves that a discrete curve is a discrete line segment if and only
if it owns the chord property.

It allows to show the two first criteria of Freeman and to deduce a
number of properties that specify the third criterion.

There are a number of algorithms for recognizing a discrete
straight line based on this property.

Digital Geometry : Topic 4 6/39



2D discrete lines

Bresenham line-drawing algorithm

Algorithm: drawing a discrete line (Bresenham, 1962)

Input: Two discrete points (x1, y1), (x2, y2) (s.t. x2 − x1 ≥ y2 − y1 > 0)

Output: Line segment between the two points

dx = x2 − x1, dy = y2 − y1;

y = y1; initialization

e = dx ; value of initial error

for x from x1 to x2 do

put the pixel (x , y);
e = e + 2dy ;
if e ≥ 2dx then

y = y + 1;
e = e − 2dx ;

Can we consider rounding instead of truncation?
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2D discrete lines

Arithmetic definition of discrete lines

Definition (Arithmetic discrete line)

A discrete line of parameters (a, b, c) and of arithmetic thickness w
where a, b, c ∈ Z and gcd(a, b) = 1 is defined as

D(a, b, c ,w) = {(p, q) ∈ Z2 : 0 ≤ ap + bq + c < w}.

The thickness parameter w allows to control the connectedness of the
line.
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2D discrete lines

Thickness and connectedness of discrete lines

Theory

Let D(a, b, c ,w) be a discrete line, then:

1 if w < max(|a|, |b|), it is not connected;

2 if w = max(|a|, |b|), it is a 8-curve ; naive line

3 if max(|a|, |b|) < w < |a|+ |b|, it is a ∗-curve (its two successive
points are 4-neighboring or strictly 8-neighboring);

4 if w = |a|+ |b|, it is a 4-curve; standard line

5 if w > |a|+ |b|, it is said thick.

1 2 4 5
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2D discrete lines

Remainder and leaning point of discrete lines

Definition (Remainder)

The remainder associated to a point p = (px , py ) of D(a, b, c ,w) is an integer
value defined by

R(p) = apx + bpy + c .

When the remainder is 0, p is called a lower leaning point.

When the remainder is w − 1, p is called a upper leaning point.

We can generalize the Bresenham algorithm by using the remainder instead of

the error e.
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2D discrete lines

Arithmetic line drawing algorithm

Algorithm: drawing an arithmetic (naive) line

Input: Two discrete points (x1, y1), (x2, y2) and c
Output: Line segment between the two points

b = x2 − x1, a = y2 − y1;

y = y1;

r = ax1 + by1 + c ;

for x from x1 to x2

put the pixel (x , y);
r = r + a;
if r ≥ b then

y = y + 1;
r = r − b;

We consider here that x2 − x1 ≥ y2 − y1 > 0.

The value of c is initially chosen such that 0 ≤ ax1 + by1 + c < b.
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2D discrete lines

Discrete line recognition

Problem (Discrete line recognition)

Given a set of discrete points X, do the points of X belong to a
discrete line?

Yes or No

If yes, what are the parameters of this discrete line?

There are many recognition algorithms with linear complexity.

1 approach of linear programming:
verify the existence of feasible (real) solutions.

2 approach based on preimage (Lindenbaum, Bruckstein, 1993):
use the properties of discrete lines in the dual space, called preimages.

3 arithmetic approach (Debled-Rennesson, Reveillès, 1995):
verify the existence of integer solutions by using arithmetic properties.

4 . . .
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2D discrete lines

Incremental algorithm for arithmetic line recognition:
initial situation

Let

S be a segment of naive line D(a, b, c) with 0 ≤ a < b,

q = (xq, yq) be the point of the greatest abscissa of S,

l and l′ be the lower leaning points of minimum and maximum
abscissas of S,

u and u′ be the upper leaning points of minimum and maximum
abscissas of S.

By adding a point p = (xp, yp) connected to S such that xp = xq + 1,
we verify if S′ = S ∪ {p} is still a naive line segment.
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2D discrete lines

Incremental algorithm for arithmetic line recognition

Theory (Debled-Rennesson and Reveillès, 1995)

We have

1 if 0 < r(p) < b, S′ is a naive line segment D(a, b, c);

2 if r(p) < −1 or b < r(p), then S′ is not a naive line segment;

3 if r(p) = −1, then S′ is a naive line segment
D(yp − yu, xp − xu,−axp + byp);

4 if r(p) = b, then S′ is a naive line segment
D(yp − yl, xp − xl,−axp + byp + b − 1).

1 4
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2D discrete lines

Farey sequence

Definition (Farey sequence (Hardy and Write, 1979))

The Farey sequence of order n, Fn, is the sequence of irreducible
fractions between 0 and 1, whose denominators are less than or equal
to n, in ascending order.

If 0 <= h <= k <= n and gcd(h, k) = 1, then h
k is in Fn.

Example (F5)
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2D discrete lines

Structure of the Farey sequence: Stern-Brocot tree

Property (Neighborhood)

If a
b and c

d are neighboring in a Farey sequence, with a
b <

c
d , then their

difference is equal to 1
bd .

Property (Median)

If a
b , p

q and c
d are neighboring in a Farey sequence such that

a
b <

p
q <

c
d , then p

q is the median of a
b and c

d such as

p

q
=

a + c

b + d
.

These properties allow to construct the Stern-Brocot tree.
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2D discrete lines

Stern-Brocot tree and discrete lines

Each vertex h
k of the tree corresponds to a pattern (motif) associated to the

discrete line of slope h
k .

Updating parameters of the incremental discrete line recognition algorithm

indicates moving from the tree root to a leaf.
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2D discrete lines

Applications of discrete line recognition

The discrete line recognition allow us to:

study the parallelism, colinearity, orthogonality, convexity in the
discrete space;

estimate geometric properties of discrete object borders, such as
the length of a curve, tangent and curvature at a point in a curve,
etc.;

make a segmentation of a discrete curve into line segments
(polygonalisation).

If there is noise in discrete object border, we need to modify the
problem.
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3D discrete lines

3D straight lines and their discretization

Definition (3D straight line)

A straight line in the Euclidean space R3 is defined by

L = {(α1t + β1, α2t + β2, α3t + β3) ∈ R3 : t ∈ R}

where αi , βi ∈ R for i = 1, 2, 3.

The discretized line D(L) defined in Z3 by the grid intersection is the
set of discrete points that are closest to the intersection in the plane of
the grid.
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3D discrete lines

Discretized line and discrete curve

A discretized line is a 26-curve.

Definition (m-curve)

An m-path π is an m-curve if for every element pi of π, i = 1, . . . , n, pi

has exactly two m-adjacent points in π, except for p0 and pn that has
only one.

Theory (Kim, 1983)

A 26-curve is a discretized line if and only if two of its projections on
the xy-, yz- and zx-planes are 8-connected 2D discrete lines.

The 3D discrete line recognition is realized by the 2D discrete line
recognition (three times).
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3D discrete lines

Arithmetic definition of 3D discrete lines

Definition (3D discrete line)

A set G ⊂ Z3 is an arithmetic line defined by seven integer parameters
a, b, c, d1, d2,w1, and w2 if and only if

G = {(x , y , z) ∈ Z3 : d1 ≤ cx−az < d1 +w1∧d2 ≤ bx−ay < d2 +w2}.

For simplification, we consider 0 ≤ c ≤ b ≤ a and gcd(a, b, c) = 1.

The parameters d1 and d2 are called
the lower bounds and the parame-
ters w1 and w2 define the arithmetic
thickness
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3D discrete lines

Thickness and connectedness of 3D discrete line

The thickness w1 and w2 allow to control the connectedness of the line.

Theory (Coeurjolly et al., 2001)

Let G be a discrete line defined by a, b, c , d1, d2,w1,w2 ∈ Z where
0 ≤ c < b < a, then:

1 if a + c ≤ w1 and a + b ≤ w2, G is 6-connected;

2 if a + c ≤ w1 and a ≤ w2 < a + b, or if a + b ≤ w2 and
a ≤ w1 < a + c, G is 18-connected;

3 if a ≤ w1 < a + c and a ≤ w2 < a + b, G is 26-connected;

4 if w1 < a or w2 < a, G is not connected.

G is called a 3D naive line if and only if w1 = w2 = max(|a|, |b|, |c |).
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3D discrete lines

3D naive line

Theory (Coeurjolly et al., 2001)

A rational line discretized by the grid intersection is a 3D naive line and
vice-versa.

According to Theory (Kim, 1983), we obtain the following corollary:

Corollary (Coeurjolly et al., 2001)

A 26-curve is a 3D naive line if and only if two of its projections on the
xy-, yz- and zx-planes are 2D naives lines.
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3D discrete lines

3D discrete line recognition

Problem (3D discrete line recognition)

Given a set of 3D discrete points X, do the points of X belong to a 3D
discrete line?

Yes or No

If yes, what are the parameters of this discrete line?

We apply the incremental algorithm for arithmetic line recognition (for
a 2D naive line) (Debled-Rennesson and Reveillès, 1995) to each
projection of X on the xy -, yz- and zx-planes.

If Yes for two of its projections, then “Yes”.
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Discrete planes

Euclidean plane

Definition (Plane)

A plane in the Euclidean space R3 is defined by

P = {(x , y , z) ∈ R3 : αx + βy + γz + δ = 0}

where α, β, γ, δ ∈ R.

In general, we have a normalisation such that |α|+ |β|+ |γ| = 1,
α2 + β2 + γ2 = 1.
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Discrete planes

Discretization of planes

Definition (Discretized plane)

The discretized plane of P in Z2 is defined by

D(P) = {(p, q, r) ∈ Z2 : 0 ≤ αp + βq + γr + δ′ ≤ ω}

where ω is called the thickness.

The values of δ′ and ω depend on the discretization model.

Grid intersection: grid points closest to
the intersections with the grid planes

δ′ = δ + max(|α|,|β|,|γ|)
2 ,

ω = max(|α|, |β|, |γ|).

Super-cover (outer Jordan): 3-cells
intersecting with the line

δ′ = δ + |α|+|β|+|γ|+1
2 ,

ω = |α|+ |β|+ |γ|+ 1.

Gauss (half-space): 3-cells with center
points in the half-space
δ′ = δ, ω decides the m-connected half-space

border: ω = max(|α|, |β|, |γ|)− 1 for m = 18.
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Discrete planes

Chordal triangle property

Definition (Kim, 1984)

A set of 3D discrete points X satisfies the chordal triangle property if
and only if for any triplet of points p1, p2 and p3 of X, every point on
the triangle p1p2p3 ∈ R3 is at L∞-distance < 1 from some point of X.

This is an extension of Rosenfeld’s chord property for 2D discrete
lines.

This is neither a necessary condition nor a sufficient condition for
a piece of discrete surface to be a piece of discrete plane.
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Discrete planes

Characterization based on the convex hull

This is the corrected version whose original one was proposed by Kim.

Theory (Debled-Rennesson, 1995)

A set of discrete points X is a piece of discrete plane if and only if

there exists a face F of the convex hull conv(X) of X such that
the distance between X and the supporting plane of F is less than
1, or

there exist two edges A1 and A2 of conv(X) such that the distance
between X and the plane generated by A1 and A2 is less than 1.

There exists an arithmetic algorithm for discrete plane recognition based on
this theorem (Debled-Rennesson, 1995); however, its complexity is not
analyzable.

The algorithm based on the original characterization of Kim has a complexity
O(n4) where n is the size of X.
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Discrete planes

Notion of separating plane

Theory (Stojmentović and Tosić, 1991)

A set of discrete points X is a piece of discrete plane if and only if
there exists an Euclidean plane P that separates X and the set X′ that
is obtained by translating X by 1 along one of the x-, y- and z-axes
(this axis is called the principal axis of the plane).

The algorithm based on this theorem has a complexity O(n) by using
techniques of linear programming. However, it is not incremental.

The incremental algorithm by using linear programming techniques was
proposed and has a complexity O(n) (Buzer, 2003).
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Discrete planes

Evenness property

The property for the discrete lines (Hung, 1985) is extended to
hyperplanes of arbitrary dimensions.

For simplification, we consider the planes with 0 ≤ β ≤ γ and γ 6= 0.

Definition (Veelaert, 1993)

A set of discrete points X is said even if and only if

the projection of X on the plane z = 0 is bijective,

for every quadruplet of points pi = (xi , yi ), i = 1, 2, . . . , 4, of X
such that x1 − x2 = x3 − x4 and y1 − y2 = y3 − y4, then
|(z1 − z2)− (z3 − z4)| ≤ 1.

This is necessary and sufficient to characterize infinite discrete
planes and pieces of rectangular planes.

This criterion can be evaluated in O(n2), with n the size of X.
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Discrete planes

Algorithms for discrete plane recognition

1 approach based on the linear programming:
O(n) (Stojmenović and Tosić, 1991)
O(n) for an incremental algorithm (Buzer, 2003)

2 approach based on the convex hull:
O(n7) with a linear behavior in practice (Gérard et al., 2005)

3 approach based on the evenness:
O(n2) (Veelaert, 1994)

4 arithmetic approach:
? (Debled-Renesson and Reveillès, 1994)

5 approach based on the preimage:
O(n3 log n) (Vittone and Chassary, 2000)

6 . . .
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Discrete planes

Arithmetic definition of discrete planes

Definition (Arithmetic plane (Reveillès, 1991))

A discrete plane of normal vector (a, b, c) with translation parameter d
and arithmetic thickness w where a, b, c , d ,w ∈ Z and gcd(a, b, c) = 1
is defined such that

Π(a, b, c, d ,w) = {(p, q, r) ∈ Z3 : 0 ≤ ap + bq + cr + d < w}.

The thickness parameter w allows to control the connectedness of the plane.
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Discrete planes

Thickness and topology of discrete plane

Definition (m-tunnel (Andres et al., 1997))

A discrete plane Π(a, b, c , d ,w) has an m-tunnel if there exist two
m-neighbors pA = (xA, yA, zA) and pB = (xB , yB , zB) such that
axa + byA + czA + d < 0 and axB + byB + czB + d ≥ w.

6-tunnel 18-tunnel 26-tunnel

Theory (Andres et al., 1997)

Let Π(a, b, c , d ,w) be a discrete plane such that 0 ≤ a ≤ b ≤ c and c 6= 0,
then:

1 if w < c, Π has 6-tunnels ;

2 if c ≤ w < b + c, Π has 18-tunnels ;

3 if b + c ≤ w < a + b + c, Π has 26-tunnels ;

4 if a + b + c ≥ w, Π has no tunnel.
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Discrete planes

Thickness and connectivity of discrete planes

Corollary (Andres et al., 1997)

Let Π(a, b, c , d ,w) be a discrete plane such that 0 ≤ a ≤ b ≤ c and
c 6= 0, then:

1 if w = c, Π is 18-connected;

2 if c < w < b + c, Π is 18- or 6-connected;

3 if b + c ≤ w, Π is 6-connected.

We call naive planes the planes of thickness w = max(|a|, |b|, |c |), and
standard planes the planes of thickness w = |a|+ |b|+ |c |.

The naive planes are thus the finest 18-connected planes without
6-tunnel, and the standard planes are the finest 6-connected without
tunnel.
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Discrete planes

Combinatorial property of naive planes: (m, n)-pieces

We consider the naive planes in the case of 0 ≤ a ≤ b ≤ c and c 6= 0.
Let m and n be two positive integers such that m, n ≤ c .

Property (Reveillès, 1995)

In a naive plane, there are at most mn combinatorially different pieces
that are projected as rectangles of size m × n on the xy-plane.

(m, n)-piece (3, 3)-piece
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Discrete planes

Combinatorial property of naive planes: periodicity

We consider the naive planes in the case of 0 ≤ a ≤ b ≤ c and c 6= 0.
Let m and n be two positive integers such that m, n ≤ c.

Property (Reveillès, 1995)

All the different configurations of (m, n)-pieces appear in the region
that is projected on the xy-plane such as a rectangle of size
(2n − 1)× (2m − 1) whose center is a leaning point.

Property (Kenmochi et Imiya, 2000)

In a naive plane, there are two types
of triangular pieces (α and β in the
figure) such that

A : B : C =
1

a
:

1

b
:

1

c

(p,q,r)
P

(p+A,q,r-C)

(p,q+B,r-C)

(p+A,q+B,r-2C)

α

β

β
α
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Discrete planes

Normal vectors for the (m, m)-pieces

We consider the naive planes in the case of 0 ≤ a ≤ b ≤ c and c 6= 0.
Let m and n be two positive integers such that m, n ≤ c.

Property (Vittone, 1999; Buzer ,2006)

For every naive plane of normal vector (a, b, c), the possible
(m,m)-pieces are obtained by the 2D Farey sequence ( a

c ,
b
c ) of order

2(m − 1)2.

(m,m)-piece (3, 3)-piece
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Discrete planes

2D Farey sequence (Hurwitz, 1894)

Definition (2D Farey sequence)

The 2D Farey sequence of order n is the set of pairs of fractions:

Fn =

{(
p

q
,

r

q

)
: gcd(p, q, r) = 1, 0 ≤ p ≤ q, 0 ≤ r ≤ q, q ≤ n

}
.

Example : F8
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