Mathematical morphology for hyperspectral images Filtering and segmentation in a supervised framework

Jesús Angulo

 $\tt jesus.angulo@ensmp.fr \ ; \ \tt http://cmm.ensmp.fr/{\sim}angulo$

CMM-Centre de Morphologie Mathématique, Mathématiques et Systèmes, MINES Paristech, FRANCE

Séminaire "Morphologie mathématique, structures et connexions" 70ème anniversaire de Jean Serra ESIEE (Marne-La-Vallée) - 2 avril 2010

Acknowledgements

Thanks to my Ph.D. student

Santiago Velasco-Forero

an excellent collaborator in the development of these works...

Plan

- 2 Supervised ordering in \mathbb{R}^p and morphological operators
- Semi-supervised segmentation using regionalized stochastic watershed
- 4 Conclusions and Perspectives

- 2 Supervised ordering in \mathbb{R}^p and morphological operators
- Semi-supervised segmentation using regionalized stochastic watershed

Mathematical morphology for hyperspectral images Hyperspectral Images

Hyperspectral images: A spectral signature for each pixel of the image

Hyperspectral images: Vectorial images

Notation: Let $\mathbf{f}_{\lambda}(\mathbf{x}) = \{f_{\lambda_j}(\mathbf{x})\}_{j=1}^L$ be a hyperspectral image

- $\mathbf{f}_{\lambda}: E \longrightarrow \mathcal{T}^{L};$
- $\mathbf{x} = (x, y) \in E \subset \mathbb{Z}^2$ are the spatial coordinates of a vector pixel;
- Each pixel has associated a vector which corresponds to a spectrum: $\mathbf{f}_{\lambda}(\mathbf{x}_i) = \mathbf{s}_k$;
- Space of spectral values is $\mathcal{T}^L \subset \mathbb{R}^L$;
- Scalar image $f_{\lambda_j}(\mathbf{x})$ corresponds to the channel or band j, $j \in \{1, 2, \dots, L\}$.

Mathematical morphology for hyperspectral images Hyperspectral Images

Hyperspectral images: Examples

 (1) Hyperspectral image of the Indian Pines (200 spectral bands in the 400-2500 nm range, 145x145 pixels), obtained by the AVIRIS sensor.
(2) Airbone image from the ROSIS-3 optical sensor of the University of Pavia (103 spectral bands of 340x610 pixels).

• Fundamental assumption: $f_{\lambda}(x)$ is composed of K spectral classes:

 $\{C_1, C_2, \cdots, C_K\}.$

• Fundamental assumption: $f_{\lambda}(x)$ is composed of K spectral classes:

$$\{C_1, C_2, \cdots, C_K\}.$$

• Training set of spectral space: Each spectral class C_k is represented by a discrete set of n_k spectra, i.e.,

$$C_k \equiv \{\mathbf{s}_{1,k}, \mathbf{s}_{2,k}, \cdots, \mathbf{s}_{n_k,k}\},\$$

such that $\mathbf{s}_{i,k} \in \mathcal{T}^L$.

• Fundamental assumption: $f_{\lambda}(x)$ is composed of K spectral classes:

$$\{C_1, C_2, \cdots, C_K\}.$$

• Training set of spectral space: Each spectral class C_k is represented by a discrete set of n_k spectra, i.e.,

$$C_k \equiv \{\mathbf{s}_{1,k}, \mathbf{s}_{2,k}, \cdots, \mathbf{s}_{n_k,k}\},\$$

such that $\mathbf{s}_{i,k} \in \mathcal{T}^L$.

• Applications: Spectral classification of all pixels, Target detection, Object segmentation, etc.

• Fundamental assumption: $f_{\lambda}(x)$ is composed of K spectral classes:

$$\{C_1, C_2, \cdots, C_K\}.$$

• Training set of spectral space: Each spectral class C_k is represented by a discrete set of n_k spectra, i.e.,

$$C_k \equiv \{\mathbf{s}_{1,k}, \mathbf{s}_{2,k}, \cdots, \mathbf{s}_{n_k,k}\},\$$

such that $\mathbf{s}_{i,k} \in \mathcal{T}^L$.

- Applications: Spectral classification of all pixels, Target detection, Object segmentation, etc.
- Tools: Statistical modelling, pattern classification and machine learning algorithms.

$$\ll \equiv \equiv \equiv \equiv \equiv \equiv \equiv \gg$$

• Fundamental assumption: $f_{\lambda}(x)$ is composed of K spectral classes:

$$\{C_1, C_2, \cdots, C_K\}.$$

• Training set of spectral space: Each spectral class C_k is represented by a discrete set of n_k spectra, i.e.,

$$C_k \equiv \{\mathbf{s}_{1,k}, \mathbf{s}_{2,k}, \cdots, \mathbf{s}_{n_k,k}\},\$$

such that $\mathbf{s}_{i,k} \in \mathcal{T}^L$.

- Applications: Spectral classification of all pixels, Target detection, Object segmentation, etc.
- Tools: Statistical modelling, pattern classification and machine learning algorithms.

$$\ll \equiv \equiv \equiv \equiv \equiv \equiv \equiv \gg$$

• Our methodological aim: Extension of mathematical morphology operators to hyperspectral images consistent with the supervised paradigm

2 Supervised ordering in \mathbb{R}^p and morphological operators

Basic notions

Complete lattice, (\mathcal{L},\leq)

Basic notions

Complete lattice, (\mathcal{L}, \leq)

 A space L endowed with a partial order ≤ is called a *complete* lattice, if for every subset H ⊆ L have both supremum (join) ∨ H and infimum (meet) ∧ H.

Complete lattice, (\mathcal{L}, \leq)

- A space L endowed with a partial order ≤ is called a *complete lattice*, if for every subset H ⊆ L have both supremum (join) ∨ H and infimum (meet) ∧ H.
- A minimum (smallest) n ∈ H is an element contained in all other elements of H, i.e., l ∈ H ⇒ n ≤ l. We denote the minimum of L by ⊥.
- A maximum (largest) n in H is an element that contains every element of H, i.e., l ∈ H ⇒ l ≤ n. We denote the maximum of L by T.

Basic notions

h-ordering

h-ordering

• Let R be a nonempty set and $\mathcal L$ a complete lattice. Furthermore, let

$$h: R \to \mathcal{L},$$

be a surjective mapping.

h-ordering

• Let R be a nonempty set and $\mathcal L$ a complete lattice. Furthermore, let

$$h: R \to \mathcal{L},$$

be a surjective mapping.

• We refer by \leq_h as the *h*-ordering given by:

$$r \leq_h r' \Leftrightarrow h(r) \leq h(r'), \quad \forall r, r' \in R$$

h-ordering

• Let R be a nonempty set and $\mathcal L$ a complete lattice. Furthermore, let

$$h: R \to \mathcal{L},$$

be a surjective mapping.

• We refer by \leq_h as the *h*-ordering given by:

$$r \leq_h r' \Leftrightarrow h(r) \leq h(r'), \quad \forall r, r' \in R$$

• Note that \leq_h preserves reflexivity $(r \leq_h r)$ and transitivity $(r_1 \leq_h r_2$ and $r_2 \leq_h r_3 \Rightarrow r_1 \leq_h r_3$)

h-ordering

• Let R be a nonempty set and $\mathcal L$ a complete lattice. Furthermore, let

$$h: R \to \mathcal{L},$$

be a surjective mapping.

• We refer by \leq_h as the *h*-ordering given by:

$$r \leq_h r' \Leftrightarrow h(r) \leq h(r'), \quad \forall r, r' \in R$$

- Note that \leq_h preserves reflexivity $(r \leq_h r)$ and transitivity $(r_1 \leq_h r_2$ and $r_2 \leq_h r_3 \Rightarrow r_1 \leq_h r_3$)
- But is not a total ordering: An equivalence class is defined by $\mathcal{L}[z] = \{r \in R | h(r) = z\}.$

Families of h-mappings

 $h: \mathbb{R}^p \to \mathcal{L} \equiv \mathbb{R} \cup \{-\infty, +\infty\}$

Families of h-mappings

 $h: \mathbb{R}^p \to \mathcal{L} \equiv \mathbb{R} \cup \{-\infty, +\infty\}$

Based on (local) projections: Under the "cluster assumption" (local structures in R^p), different projections can be obtained per cluster, i.e.,

$$h(\mathbf{s}) = \sum_{i=1}^{p} \lambda_{\mathbf{s}}^{i} s^{i}$$

Families of h-mappings

 $h: \mathbb{R}^p \to \mathcal{L} \equiv \mathbb{R} \cup \{-\infty, +\infty\}$

Based on (local) projections: Under the "cluster assumption" (local structures in R^p), different projections can be obtained per cluster, i.e.,

$$h(\mathbf{s}) = \sum_{i=1}^{p} \lambda_{\mathbf{s}}^{i} s^{i}$$

• Based on (local) adaptive distances: Given the reference (or training) subset $T \subset \mathbb{R}^p$, $T = \{\mathbf{t}_1, \dots, \mathbf{t}_{|T|}\}$, with $\mathbf{t}_i \in \mathbb{R}^p, \forall i$, we have

$$h(\mathbf{s}) = \sum_{i=1}^{|\mathcal{T}|} \lambda_{\mathbf{s}}^{i} \phi(\mathbf{t}_{i}, \mathbf{s})$$

where $\phi : \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}^+$ is a kernel-induced distance and weights λ_s^i are fitted for each vector **s** in \mathbb{R}^p

h-supervised ordering based on kernelized distances

• Contribution: To introduce a supervised ordering formulation, based on both background *B* and foreground *F* training sets, which allows an adequate interpretation of dual morphological operators.

h-supervised ordering based on kernelized distances

- Contribution: To introduce a supervised ordering formulation, based on both background *B* and foreground *F* training sets, which allows an adequate interpretation of dual morphological operators.
- Basic assumption: Given a set R and the subsets B, F ⊂ R, such that B ∩ F = Ø, we define a h-ordering that satisfies the conditions:

$$h(\mathbf{s}) = \perp \mathsf{ if } \mathbf{s} \in B$$

and

$$h(\mathbf{s}) = \top$$
 if $\mathbf{s} \in F$

where \bot, \top are the smallest and largest element in the lattice \mathcal{L} .

Examples of h-orderings in \mathbb{R}^2

Unsupervised ordering using first principal component: $h(\mathbf{s}) = \sum_{i=1}^{2} \lambda^{i} s_{i}$

Supervised ordering using a single reference $f \ (\text{red circle}): \ \textit{h}_{f}(s) = K(s,f)$

Examples of h-orderings in $\mathbb{R}^{2^{\prime}}$

Supervised ordering using based on F = f (red circle) and $B = b_1$ (green circle): $h_{[f,b_1]}(s) = \frac{\kappa(f,s) - \kappa(b_1,s)}{\kappa(s,s) - \kappa(f,b_1)}$

Supervised ordering using based on F = f (red circle) and $B = b_2(purple circle)$: $h_{[f,b_2]}(s) = \frac{K(f,s)-K(b_2,s)}{K(s,s)-K(f,b_2)}$

Hyperspectral erosion and dilation

• Total ordering: The function $h_{[F,B]}(\mathbf{s})$ yields a partial ordering in \mathbb{R}^p , but in practical applications for hyperspectral image processing, a total ordering is required: the total ordering is induced including a lexicographic order in $\mathcal{L}[z]$, for all z.

Hyperspectral erosion and dilation

- Total ordering: The function h_[F,B](s) yields a partial ordering in ℝ^p, but in practical applications for hyperspectral image processing, a total ordering is required: the total ordering is induced including a lexicographic order in L[z], for all z.
- Erosion and dilation: For the hyperspectral image $\mathbf{f}_{\lambda}(\mathbf{x})$, given the ordering mapping $h_{[F,B]}(\mathbf{s})$ and the structuring element S

$$\begin{cases} \varepsilon_{\langle h_{[F,B]},S\rangle}(\mathbf{f}_{\lambda})(\mathbf{x}) = \{\mathbf{f}_{\lambda}(\mathbf{y}) : h_{[F,B]}(\mathbf{f}_{\lambda}(\mathbf{y})) = \bigwedge \left[h_{[F,B]}(\mathbf{f}_{\lambda}(\mathbf{z}))\right], \mathbf{z} \in S(\mathbf{x}))\}, \\ \delta_{\langle h_{[F,B]},S\rangle}(\mathbf{f}_{\lambda})(\mathbf{x}) = \{\mathbf{f}_{\lambda}(\mathbf{y}) : h_{[F,B]}(\mathbf{f}_{\lambda}(\mathbf{y})) = \bigvee \left[h_{[F,B]}(\mathbf{f}_{\lambda}(\mathbf{z}))\right], \mathbf{z} \in S(\mathbf{x}))\}. \end{cases}$$

Hyperspectral erosion and dilation

- Total ordering: The function h_[F,B](s) yields a partial ordering in ℝ^p, but in practical applications for hyperspectral image processing, a total ordering is required: the total ordering is induced including a lexicographic order in L[z], for all z.
- Erosion and dilation: For the hyperspectral image $f_{\lambda}(x)$, given the ordering mapping $h_{[F,B]}(s)$ and the structuring element S

$$\begin{cases} \varepsilon_{\langle h_{[F,B]},S\rangle}(\mathbf{f}_{\lambda})(\mathbf{x}) = \{\mathbf{f}_{\lambda}(\mathbf{y}) : h_{[F,B]}(\mathbf{f}_{\lambda}(\mathbf{y})) = \bigwedge \left[h_{[F,B]}(\mathbf{f}_{\lambda}(\mathbf{z}))\right], \mathbf{z} \in S(\mathbf{x}))\}, \\ \delta_{\langle h_{[F,B]},S\rangle}(\mathbf{f}_{\lambda})(\mathbf{x}) = \{\mathbf{f}_{\lambda}(\mathbf{y}) : h_{[F,B]}(\mathbf{f}_{\lambda}(\mathbf{y})) = \bigvee \left[h_{[F,B]}(\mathbf{f}_{\lambda}(\mathbf{z}))\right], \mathbf{z} \in S(\mathbf{x}))\}. \end{cases}$$

• Duality:

$$\varepsilon_{\langle h_{[F,B]},S\rangle}(\mathbf{f}_{\lambda}) = \delta_{\langle h_{[B,F]},S\rangle}(\mathbf{f}_{\lambda})$$

and

$$\varepsilon_{\langle h_{[F,B]}, S \rangle}(\mathbf{f}_{\lambda}) = \delta_{\langle -h_{[F,B]}, S \rangle}(\mathbf{f}_{\lambda})$$

Hyperspectral morphological processing

Hyperspectral erosion and dilation

Original image $f_\lambda(x)$

$$F_1 = \{s_{water}\}$$
 (in blue), $B_1 = \{s_{vegetation}\}$ (in red)

 $F_2 = \{s_{land}\}$ (in blue), $B_2 = \{s_{water}\}$ (in red)

Hyperspectral morphological processing

Hyperspectral erosion and dilation

 $\text{Unitary hexagonal erosion } \varepsilon_{\langle \boldsymbol{h}_{[\boldsymbol{F}_1, \boldsymbol{B}_1], \boldsymbol{H}\rangle}(\mathbf{f}_\lambda)(\mathbf{x}) } \quad \text{Unitary hexagonal dilation } \delta_{\langle \boldsymbol{h}_{[\boldsymbol{F}_1, \boldsymbol{B}_1], \boldsymbol{H}\rangle}(\mathbf{f}_\lambda)(\mathbf{x}) }$

$$\text{Morphological gradient } \delta_{\langle h_{[F_1, B_1]}, H \rangle}(f_{\lambda})(x) -_{h} \varepsilon_{\langle h_{[F_1, B_1]}, H \rangle}(f_{\lambda})(x)$$

Hyperspectral morphological processing

Hyperspectral erosion and dilation

 $\text{Unitary hexagonal erosion } \varepsilon_{\langle h_{[F_2,B_2],H\rangle}(\mathbf{f}_{\lambda})(\mathbf{x})} \quad \text{Unitary hexagonal dilation } \delta_{\langle h_{[F_2,B_2],H\rangle}(\mathbf{f}_{\lambda})(\mathbf{x})}$

 $\text{Morphological gradient } \delta_{\langle h_{[F_2, B_2]}, H \rangle}(f_{\lambda})(x) -_{h} \varepsilon_{\langle h_{[F_2, B_2]}, H \rangle}(f_{\lambda})(x)$

19/43

Hyperspectral morphological processing

Hyperspectral opening

Opening Hex. 4 $\gamma_{\langle \boldsymbol{h}_{[\boldsymbol{F_1}, \boldsymbol{B_1}]}, \boldsymbol{10H} \rangle}(\boldsymbol{f}_{\lambda})(\boldsymbol{x})$

Opening Hex. 10 $\gamma_{\langle \pmb{h_{[F_1,B_1]}}, \pmb{10H} \rangle}(\pmb{f}_{\lambda})(\pmb{x})$

Top-Hat
$$f_{\lambda})(x) - {}_{h} \gamma_{\langle h_{[F_1,B_1]}, 10H \rangle}(f_{\lambda})(x)$$

$$\text{Top-Hat } \mathbf{f}_{\lambda})(\mathbf{x}) -_{\mathbf{h}} \gamma_{\langle \mathbf{h}_{[\mathbf{F}_{1},\mathbf{B}_{1}]},\mathbf{10H} \rangle}(\mathbf{f}_{\lambda})(\mathbf{x})$$

Hyperspectral morphological processing

Hyperspectral swamping (geodesic reconstruction)

Original $f_{\lambda}(x)$

Geodesic. Recons. $\gamma^{rec}_{\langle h_{[F_1,B_1]} \rangle}(f_{\lambda},m_{\lambda})(x)$

Marker $\mathbf{m}_{\lambda}(\mathbf{x})$

Hyperspectral morphological processing

Spectral structure extraction

Original $f_{\lambda}(x)$ and F = f, B = b

 $\rho_{\boldsymbol{h}_{[\boldsymbol{F},\boldsymbol{\emptyset}]},\boldsymbol{5H}}^{+}(\boldsymbol{f}_{\lambda}), \ \rho_{\boldsymbol{h}_{[\boldsymbol{F},\boldsymbol{\emptyset}]},\boldsymbol{5H}}^{-}(\boldsymbol{f}_{\lambda})$

 $\rho_{\boldsymbol{h}_{[\boldsymbol{F},\boldsymbol{B}]},\boldsymbol{5}\boldsymbol{H}}^{+}(\boldsymbol{f}_{\lambda}), \rho_{\boldsymbol{h}_{[\boldsymbol{F},\boldsymbol{B}]},\boldsymbol{5}\boldsymbol{H}}^{-}(\boldsymbol{f}_{\lambda})$

Hyperspectral morphological processing

Method	OA	AA
1-to-all Classif.	0.7925	0.8649
1-to-all Classif - Lev 1	0.8409	0.9136
1-to-all Classif - Lev 2	0.8472	0.9159
1-to-all Classif - Lev 3	0.8373	0.8675

Classif.

Hyperspectral morphological processing

Classif. on Lev. AF1

Method	OA	AA
1-to-all Classif	0.7925	0.8649
1-to-all ClassifLev.1	0.8409	0.9136
1-to-all Classif - Lev 2	0.8472	0.9159
1-to-all Classif - Lev 3	0.8373	0.8675

Hyperspectral morphological processing

Classif. on Lev. AF1

Method	OA	AA
1-to-all Classif	0.7925	0.8649
1-to-all Classif - Lev 1	0.8409	0.9136
1-to-all ClassifLev.2	0.8472	0.9159
1-to-all Classif - Lev 3	0.8373	0.8675

Hyperspectral morphological processing

Classif. on Lev. AF1

Method	OA	AA
1-to-all Classif	0.7925	0.8649
1-to-all Classif - Lev 1	0.8409	0.9136
1-to-all Classif -Lev 2	0.8472	0.9159
1-to-all ClassifLev.3	0.8373	0.8675

2 Supervised ordering in \mathbb{R}^p and morphological operators

- Aim: Semi-supervised segmentation of hyperspectral images
 - To obtain in a reliable way the contours of the most significant spatial structures focussing on a particular spectral class
 - Using a training dataset of spectra as prior information but without a deterministic classification

- Aim: Semi-supervised segmentation of hyperspectral images
 - To obtain in a reliable way the contours of the most significant spatial structures focussing on a particular spectral class
 - Using a training dataset of spectra as prior information but without a deterministic classification
- Context: In high spatial resolution images, there are many complex structures at various scales and the definition of a single segmentation is a challenging difficult problem

- Aim: Semi-supervised segmentation of hyperspectral images
 - To obtain in a reliable way the contours of the most significant spatial structures focussing on a particular spectral class
 - Using a training dataset of spectra as prior information but without a deterministic classification
- Context: In high spatial resolution images, there are many complex structures at various scales and the definition of a single segmentation is a challenging difficult problem
- Contribution: MonteCarlo simulations of regionalized germs, according to a membership probability map, for the computation of the probability of contours using the stochastic watershed

Modelling Membership Probability Map of Spectral Classes

• Standard assumption on hyperspectral imaging: each spectral class follow a normal distribution $C_k \equiv \mathcal{N}(\mu_k, \Sigma_k)$. Hence, using Bayesian terminology, the Gaussian conditional density per class is given by

$$\Pr(\mathbf{s}_{i} \mid C_{k}) = \frac{1}{(2\pi)^{\frac{L}{2}} |\Sigma_{k}|^{\frac{L}{2}}} e^{-\frac{1}{2}(\mathbf{s}_{i} - \mu_{k})^{T} \Sigma_{k}^{-1}(\mathbf{s}_{i} - \mu_{k})}$$

 According to the Bayes Decision Rule, the maximum a posteriori discriminant function becomes (eliminating constant terms, taking natural logs and assuming also equiprobable priors)

$$g_k(\mathbf{s}_i) = \Pr\left(C_k \mid \mathbf{s}_i\right) \approx -\frac{1}{2}\left[\left(\mathbf{s}_i - \mu_k\right)^T \Sigma^{-1}\left(\mathbf{s}_i - \mu_k\right)\right]$$

Modelling Membership Probability Map of Spectral Classes

• Membership Probability Map (MPM) of the class C_k , $\pi_k^M(\mathbf{x})$: $E \to \mathbb{R}_+$, is defined by

$$\pi_k^M(\mathbf{x}) = \frac{\exp\left(\frac{-\frac{1}{2}\left[(\mathbf{f}_\lambda(\mathbf{x}) - \mu_k)^T \boldsymbol{\Sigma}_k^{-1}(\mathbf{f}_\lambda(\mathbf{x}) - \mu_k)\right]}{\sigma_{MPM}}\right)}{\sum_{\mathbf{y} \in E} \exp\left(\frac{-\frac{1}{2}\left[(\mathbf{f}_\lambda(\mathbf{y}) - \mu_k)^T \boldsymbol{\Sigma}_k^{-1}(\mathbf{f}_\lambda(\mathbf{y}) - \mu_k)\right]}{\sigma_{MPM}}\right)}$$

- A high value of $\pi_k(\mathbf{x})$ implies that the image value spectrum $\mathbf{f}_{\lambda}(\mathbf{x})$ has a high probability to belongs to the class C_k .
- The parameter σ_{MPM} allows to introduce a scaling regularization of the distance values ($\sigma_{MPM} = 0.1$ produces a good trade-off).
- In the experiments of this paper we use only 10 spectral samples as training set $\Rightarrow \Sigma_k$ is the identity matrix (the computation of the inverse of covariance matrix Σ_k^{-1} makes no sense and it may introduce important errors in the distance)

Regionalized Random Germs Simulations from MPM

• Regionalized Poisson Points: Given a density function variable in the space $\theta(\mathbf{x})$ (being a measurable function in \mathbb{R}^d , with positive values), the number of points falling in a borel set *B* according to a θ follows a Poisson distribution of parameter $\theta(D)$, i.e.,

$$\Pr\{N(D) = n\} = e^{-\theta(D)} \frac{(-\theta(D))^n}{n!}.$$

with $\theta(D) = \int \theta(\mathbf{x}) d\mathbf{x}$.

- In such a case, if N(D) = n, the *n* are independently distributed over *D* with the probability density function $\hat{\theta}(\mathbf{x}) = \theta(\mathbf{x})/\theta(D)$.
- Aim: Generating a non-uniform distribution of germs, with a regionalized pdf associated to class k such that $\hat{\theta}(\mathbf{x}) \equiv \pi_k(\mathbf{x})$.

Regionalized Random Germs Simulations from MPM

• Algorithm to simulate in $m(\mathbf{x}_i)$ a realization of N independent random germs distributed according to $\pi_k(\mathbf{x})$ using an inverse transform sampling method:

1. Initialization: $m(\mathbf{x}_i) = 0 \ \forall \mathbf{x}_i \in E$; P = Card(E)

2. Compute cumulative distribution function: $cdf(\mathbf{x}_i) = \frac{\sum_{k \le i} \pi_k(\mathbf{x}_k)}{\sum_{k \ge i} \frac{\sum_{k \ge i} \pi_k(\mathbf{x}_k)}}{\sum_{k \ge i} \frac{\sum_{k \ge i} \pi_k(\mathbf{x}_k)}{\sum_{k \ge i} \frac{\sum_{k \ge i} \pi_k(\mathbf{x}_k)}{\sum_{k \ge i} \frac{\sum_{k \ge i} \pi_k(\mathbf{x}_k)}}{\sum_{k \ge i} \frac{\sum_{i} \pi_k(\mathbf{x}_k)}{\sum_{i} \frac{\sum_{i} \pi_k(\mathbf{x}_k)}}{\sum_{i} \frac{\sum_{i} \pi_k}}}}$

3. for
$$j = 1$$
 to N

4.
$$r_j \sim \mathcal{U}(1, P)$$

5. Find the value s_j such that $r_j \leq cdf(\mathbf{x}_{s_j})$.

$$6. \qquad m(\mathbf{x}_{s_j}) = 1$$

Regionalized Random Germs Simulations from MPM

• Examples:

Computation of pdf of contours

 A MPM image is constructed for each spectral class of the hyperspectral image, i.e., {**f**_λ(**x**), C_k} → π_k(**x**)

- A MPM image is constructed for each spectral class of the hyperspectral image, i.e., {f_λ(x), C_k} → π_k(x)
- To generate *M* realizations of *N* regionalized random points i.e., $\pi_k(\mathbf{x}) \mapsto \{mrk_i^{\pi_k}(\mathbf{x})\}_{i=1}^M$

- A MPM image is constructed for each spectral class of the hyperspectral image, i.e., {f_λ(x), C_k} → π_k(x)
- To generate *M* realizations of *N* regionalized random points i.e., $\pi_k(\mathbf{x}) \mapsto \{mrk_i^{\pi_k}(\mathbf{x})\}_{i=1}^M$
- Estimation of the probability density of contours of spectral band λ_j with respect to the class C_k , i.e.,

$$pdf_{\lambda_j}^{C_k}(\mathbf{x}) = \frac{1}{M} \sum_{i=1}^M WS(\varrho(f_{\lambda_j}), mrk_i^{\pi_k})(\mathbf{x}) * K(\mathbf{x}; \sigma_{spatial}).$$

- A MPM image is constructed for each spectral class of the hyperspectral image, i.e., {f_λ(x), C_k} → π_k(x)
- To generate *M* realizations of *N* regionalized random points i.e., $\pi_k(\mathbf{x}) \mapsto \{mrk_i^{\pi_k}(\mathbf{x})\}_{i=1}^M$
- Estimation of the probability density of contours of spectral band λ_j with respect to the class C_k , i.e.,

$$pdf_{\lambda_j}^{C_k}(\mathbf{x}) = \frac{1}{M} \sum_{i=1}^M WS(\varrho(f_{\lambda_j}), mrk_i^{\pi_k})(\mathbf{x}) * K(\mathbf{x}; \sigma_{spatial}).$$

• Probability density of contours of hyperspectral image w.r.t. the class C_k is obtained as the kernelized sum of the marginal pdf's of the spectral bands, i.e.,

$$\{\mathbf{f}_{\lambda}(\mathbf{x}), C_k\} \mapsto pdf^{C_k}(\mathbf{x}) = \frac{1}{L} \sum_{j=1}^{L} pdf^{C_k}_{\lambda_j}(\mathbf{x}) * K(\lambda; \sigma_{spectral}).$$

Computation of pdf of contours

• Examples:

- The pdf^S(x) could be directly thresholded in order to obtain the most prominent contours
- However, the results are only pieces of contours (not enclosing regions).
- There is not an optimal threshold to separate the classes of contours.
- An alternative technique to segment automatically the pdf of the hyperspectral image in significant closed regions is to apply a morphological hierarchical algorithm. Mainly, two hierarchical techniques can be distinguished:

i) Non-parametric waterfalls algorithm;

ii) Hierarchies based on extinction values, which allows to select the minima used in the watershed according to morphological criteria (dynamics, surface area and volume).

• By selecting a particular level of the hierarchy, contours of the regions having a higher probability to belong to the final segmentation than the regions appearing in lower levels are obtained.

• Examples of hierarchical segmentation

Waterfalls-based 3 levels

Dynamics-based 5, 10, 20 regions

pdf^C6(x)

Volumic-based 5, 10, 20 regions

• Examples of hierarchical segmentation

Waterfalls-based

Class 8 - Blue

Dynamics-based 5, 10, 20 regions

 $pdf^{C_8}(x)$

Volumic-based 5, 10, 20 regions

• Examples of dynamics-based hierarchical segmentation

• Examples of dynamics-based hierarchical segmentation

2 Supervised ordering in \mathbb{R}^p and morphological operators

Mathematical morphology for hyperspectral images Conclusions and Perspectives

• Main idea: Supervised statistical learning for $h_{[F_k,B_k]}(s)$ and $\pi_k(x)$

- Main idea: Supervised statistical learning for $h_{[F_k,B_k]}(s)$ and $\pi_k(x)$
- "Popular" misconceptions on mathematical morphology for multivariate images:
 - Multivariate morphological segmentation is just the computation of a vectorial gradient
 - Besides the marginal ordering, the vectorial orderings are *ad hoc* "cooking recipes"

- Main idea: Supervised statistical learning for $h_{[F_k,B_k]}(s)$ and $\pi_k(x)$
- "Popular" misconceptions on mathematical morphology for multivariate images:
 - Multivariate morphological segmentation is just the computation of a vectorial gradient
 - Besides the marginal ordering, the vectorial orderings are *ad hoc* "cooking recipes"
- Milestones by Jean Serra:
 - J. Serra. Anamorphoses and Function Lattices (Multivalued Morphology). In *Mathematical Morphology in Image Processing*, E. Dougherty, Marcel-Dekker, 483-523, 1992.
 - J. Serra, M. Mlynarczuk. Morphological merging of multidimensional data. *Proc. of STERMAT'00*, pp. 485-390, 2000.
 - J. Serra. The "False Colour" Problem. Proc. of the ISMM'09, LNCS Vol. 5720, 13-23, 2009.

- Main idea: Supervised statistical learning for $h_{[F_k,B_k]}(s)$ and $\pi_k(x)$
- "Popular" misconceptions on mathematical morphology for multivariate images:
 - Multivariate morphological segmentation is just the computation of a vectorial gradient
 - Besides the marginal ordering, the vectorial orderings are *ad hoc* "cooking recipes"
- Milestones by Jean Serra:
 - J. Serra. Anamorphoses and Function Lattices (Multivalued Morphology). In Mathematical Morphology in Image Processing, E. Dougherty, Marcel-Dekker, 483-523, 1992.
 - J. Serra, M. Mlynarczuk. Morphological merging of multidimensional data. *Proc. of STERMAT'00*, pp. 485-390, 2000.
 - J. Serra. The "False Colour" Problem. Proc. of the ISMM'09, LNCS Vol. 5720, 13-23, 2009.
- Next:
 - (Pseudo-)mathematical morphology for non Euclidean spaces: Riemannian manifolds, Statistical manifolds
 - Banach Lattices and Operators

Mathematical morphology for hyperspectral images Conclusions and Perspectives

More details...

- S. Velasco-Forero and J. Angulo. "Supervised ordering in R^p: Application to morphological processing of hyperspectral images". Submitted to *IEEE Transactions on PAMI*, 2010.
- J. Angulo, and S. Velasco-Forero. "Semi-supervised hyperspectral image segmentation using regionalized stochastic watershed". In Proc. of SPIE symposium on Defense, Security, and Sensing: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI, SPIE Vol. 7695, Orlando, United States, April 2010.