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Hyperspectral Images

Hyperspectral images: A spectral signature for each pixel
of the image

Set of brightness values for a single
raster cell position in the
hyperspectral image.

Spectrum can be used to identify surface malerials.
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Hyperspectral Images

Hyperspectral images: Vectorial images

Image at a

Spectrafora
single wavelength

single pixel

Reflectance

Wavelength Spatial dimension

Notation: Let fy(x) = {f,\j(x)}}:1 be a hyperspectral image

of\:E—TL

e x = (x,y) € E C Z? are the spatial coordinates of a vector pixel;

@ Each pixel has associated a vector which corresponds to a spectrum:
f,\(Xi) = Sk,

@ Space of spectral values is 7- C R,

@ Scalar image fy;(x) corresponds to the channel or band j,
je{1,2,...,L}.
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Hyperspectral Images

Hyperspectral images: Examples

(1) “Indian Pines” (2) “Pavia”

(1) Hyperspectral image of the Indian Pines (200 spectral bands in the
400-2500 nm range, 145x145 pixels), obtained by the AVIRIS sensor.

(2) Airbone image from the ROSIS-3 optical sensor of the University of Pavia
(103 spectral bands of 340x610 pixels).
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Hyperspectral Images

Supervised paradigm for hyperspectral image analysis

e Fundamental assumption: fy(x) is composed of K spectral classes:

{Cla C2a"' 7CK}-
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Supervised paradigm for hyperspectral image analysis

e Fundamental assumption: fy(x) is composed of K spectral classes:

{Cla C2a"' 7CK}-

@ Training set of spectral space: Each spectral class Cy is represented
by a discrete set of nj spectra, i.e.,

Ck = {S1,k:52,k> " +Sng k)
such that s; , € L.
@ Applications: Spectral classification of all pixels, Target detection,
Object segmentation, etc.
@ Tools: Statistical modelling, pattern classification and machine
learning algorithms.
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Hyperspectral Images

Supervised paradigm for hyperspectral image analysis

e Fundamental assumption: fy(x) is composed of K spectral classes:
{Cla C2a R} CK}

@ Training set of spectral space: Each spectral class Cy is represented
by a discrete set of nj spectra, i.e.,

Co = {s1.k:52.k, " » Sk}

such that s; , € L.

@ Applications: Spectral classification of all pixels, Target detection,
Object segmentation, etc.

@ Tools: Statistical modelling, pattern classification and machine
learning algorithms.

e Our methodological aim: Extension of mathematical
morphology operators to hyperspectral images consistent with
the supervised paradigm
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© Supervised ordering in RP and morphological operators
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o A space L endowed with a partial order < is called a complete
lattice, if for every subset H C L have both supremum (join) \/ H
and infimum (meet) A\ H.
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Basic notions

Complete lattice, (£, <)

o A space L endowed with a partial order < is called a complete
lattice, if for every subset H C L have both supremum (join) \/ H
and infimum (meet) A\ H.

e A minimum (smallest) n € H is an element contained in all other
elements of H, i.e., | € H = n < [. We denote the minimum of £
by L.

o A maximum (largest) nin H is an element that contains every

element of H, i.e., I € H = | < n. We denote the maximum of £
by T.
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be a surjective mapping.
o We refer by <y, as the h-ordering given by:
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Basic notions

h-ordering
@ Let R be a nonempty set and £ a complete lattice. Furthermore, let
h:R— L,

be a surjective mapping.
o We refer by <y, as the h-ordering given by:

r<pr & h(r) <h(r'), Vr,r'eR

o Note that <j, preserves reflexivity (r <j r) and transitivity (r1 <p r»
andn<pn=n<pn)

@ But is not a total ordering: An equivalence class is defined by
L[z] = {r € R|h(r) = z}.
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Families of h-mappings

h:RP — L =RU{—00,+o0}
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structures in RP), different projections can be obtained per cluster,
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h(s) => A’
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Families of h-mappings

h:RP — L =RU{—00,+o0}

@ Based on (local) projections: Under the “cluster assumption” (local
structures in RP), different projections can be obtained per cluster,

ie.,
P
h(s) => A’
i=1

@ Based on (local) adaptive distances: Given the reference (or training)
subset T CRP, T = {t1,...,t;7|}, with t; € R”, Vi, we have

[T

h(s) =) Aé(ti,s)
i=1

where ¢ : R? x R — R™" is a kernel-induced distance and weights
AL are fitted for each vector s in R?
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h-supervised ordering based on kernelized distances

o Contribution: To introduce a supervised ordering formulation, based
on both background B and foreground F training sets, which allows
an adequate interpretation of dual morphological operators.
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Supervised ordering in RP and morphological operators

h-supervised ordering based on kernelized distances

o Contribution: To introduce a supervised ordering formulation, based
on both background B and foreground F training sets, which allows
an adequate interpretation of dual morphological operators.

@ Basic assumption: Given a set R and the subsets B, F C R, such
that BN F = (), we define a h-ordering that satisfies the conditions:

h(s)= LifseB

and
h(s)=TifseF

where L, T are the smallest and largest element in the lattice L.
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Supervised ordering in RP and morphological operators

Examples of h-orderings in R?
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Unsupervised ordering using first Supervised ordering using a single reference
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principal component: h(s) = 37, Ns; f (red circle): he(s) = K(s, f)
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Examples of h-orderings in R?

Supervised ordering using based on Supervised ordering using based on
F = f (red circle) and B = bj(green circle): F = f (red circle) and B = ba(purple circle):

_ K(f,s)—K(by ,s) _ K(f,;s)—K(bp,s)
hig by)(s) = K(s,z)—K(f,lh:) hig by1(s) = K(s,:)—K(f,zb:)
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Hyperspectral erosion and dilation

o Total ordering: The function hir p)(s) yields a partial ordering in R?,
but in practical applications for hyperspectral image processing, a
total ordering is required: the total ordering is induced including a
lexicographic order in L[z], for all z.
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Hyperspectral erosion and dilation

o Total ordering: The function hir p)(s) yields a partial ordering in R?,
but in practical applications for hyperspectral image processing, a
total ordering is required: the total ordering is induced including a
lexicographic order in L[z], for all z.

e Erosion and dilation: For the hyperspectral image fy(x), given the
ordering mapping hjr g|(s) and the structuring element S

{ e g5y () (%) = {Ex(y) : hiegy (FA(Y)) = A [hir,5) (FA(2))] .2 € S(x))},
Sine 5,5 (F(X) = {fx(¥) : hie ey (FA(y)) = V [hir .51 (FA(2))] 1z € S(x))}
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Hyperspectral erosion and dilation

o Total ordering: The function hir p)(s) yields a partial ordering in R?,
but in practical applications for hyperspectral image processing, a
total ordering is required: the total ordering is induced including a
lexicographic order in L[z], for all z.

e Erosion and dilation: For the hyperspectral image fy(x), given the
ordering mapping hjr g|(s) and the structuring element S

{ e g5y () (%) = {Ex(y) : hiegy (FA(Y)) = A [hir,5) (FA(2))] .2 € S(x))},
Sine 5,5 (F(X) = {fx(¥) : hie ey (FA(y)) = V [hir .51 (FA(2))] 1z € S(x))}

@ Duality:
€(hir,5.5) (Fx) = Oing gp.5) (FX)
and
€(hie5.5) (Fx) = (- nr g.5)(F)
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Hyperspectral morphological processing

Hyperspectral erosion and dilation

Original image

fa(x)

)

Em v m B

F2 = {Sjanq} (in blue), Ba = {Swater } (in red)
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Hyperspectral morphological processing

Hyperspectral erosion and dilation

Morphological gradient 5<”[F1 Bl]’H>(f*)(x) “h E(hiey gy H (f2)(x)
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Hyperspectral morphological processing

Hyperspectral erosion and dilation

Unitary hexagonal dilation 6<,,[F Bs] Hy (Fx)(x)
2:52)”

Morphological gradient 5<h[F2)52],H>(f>\)(x) “h (hip, By) M) (Fa)(x)
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Hyperspectral morphological processing

Hyperspectral opening

Opening Hex. 4 A/(h[,:l,Bl],lOH)(fA)(X) Top-Hat fy)(x) —p, V(hie, py]-10H) (F2)(x)

Opening Hex. 10 7<h[F1331],10H>(f*)(X) Top-Hat fy)(x) —p, V<"[F1,31]v1°"'> (f2)(x) 20/ 43
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Supervised ordering in RP and morphological operators

Hyperspectral morphological processing

Hyperspectral swamping (geodesic reconstruction)

Marker my (x)

iy

- rec - _ rec
Geodesic. Recons. 'YU'[FI,Bl])(fA’m)‘)(X) Residue fy)(x) —p, PY(h[Fl,Bl])(fA’ m)y )(x) 21 a3
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Hyperspectral morphological processing

Spectral structure extraction

RN

01
Band number

[T
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Hyperspectral morphological processing

Spatial-driven supervised classification

Method [ OA | AA

1-to-all Classif. 0.7925 0.8649
1-to-all Classif.-Lev.1 0.8409 0.9136
1-to-all Classif.-Lev.2 0.8472 0.9159
1-to-all Classif.-Lev.3 0.8373 0.8675

Classif.
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Hyperspectral morphological processing

Spatial-driven supervised classification
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© Semi-supervised segmentation using regionalized stochastic watershed
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Semi-supervised segmentation using regionalized
stochastic watershed

@ Aim: Semi-supervised segmentation of hyperspectral images
e To obtain in a reliable way the contours of the most significant
spatial structures focussing on a particular spectral class
o Using a training dataset of spectra as prior information but without a
deterministic classification
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Semi-supervised segmentation using regionalized
stochastic watershed

@ Aim: Semi-supervised segmentation of hyperspectral images
e To obtain in a reliable way the contours of the most significant
spatial structures focussing on a particular spectral class
o Using a training dataset of spectra as prior information but without a
deterministic classification

o Context: In high spatial resolution images, there are many complex
structures at various scales and the definition of a single
segmentation is a challenging difficult problem

e Contribution: MonteCarlo simulations of regionalized germs,
according to a membership probability map, for the computation of
the probability of contours using the stochastic watershed
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Modelling Membership Probability Map of Spectral
Classes

@ Standard assumption on hyperspectral imaging: each spectral class
follow a normal distribution Cx = N (puk, X). Hence, using Bayesian
terminology, the Gaussian conditional density per class is given by

1 (g )T (s —
Pr(si | Ci) = — e 36 m T )
(2m)= [l =

@ According to the Bayes Decision Rule, the maximum a posteriori
discriminant function becomes (eliminating constant terms, taking
natural logs and assuming also equiprobable priors)

g (51) = Pr(Ge | s9) ~ — (s — 1) "= (51 — )]
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Modelling Membership Probability Map of Spectral
Classes

@ Membership Probability Map (MPM) of the class Cy, 7} (x) :
E — Ry, is defined by

=3[ 0= i) TE (B () —111)]
M exp omPM
mie (x) = — () =) TE (B () )] '
ZYGE exp ( omMPM >

@ A high value of 7,(x) implies that the image value spectrum fy(x)
has a high probability to belongs to the class Cj.

@ The parameter oppp allows to introduce a scaling regularization of
the distance values (opmpn = 0.1 produces a good trade-off).

@ In the experiments of this paper we use only 10 spectral samples as
training set = X is the identity matrix (the computation of the
inverse of covariance matrix Z;l makes no sense and it may
introduce important errors in the distance)
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Regionalized Random Germs Simulations from MPM

@ Regionalized Poisson Points: Given a density function variable in the
space 6(x) (being a measurable function in RY, with positive
values), the number of points falling in a borel set B according to a
6 follows a Poisson distribution of parameter 6(D), i.e.,

Pr{N(D) = n} = efe(D)%,
with (D) = [ 6(x)dx.

@ In such a case, if N(D) = n, the n are independently distributed over
D with the probability density function 6(x) = 6(x)/6(D).

e Aim: Generating a non-uniform distribution of germs, with a
regionalized pdf associated to class k such that 6(x) = m(x).
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Regionalized Random Germs Simulations from MPM

o Algorithm to simulate in m(x;) a realization of N independent
random germs distributed according to 7x(x) using an inverse
transform sampling method:

1. Initialization: m(x;) =0 Vx; € E; P = Card(E)

2. Compute cumulative distribution function: cdf(x;) =

Zkgi i (Xk)
>y k(%K)

3.forj=1to N

4.
5.
6

rj ~U(1, P)
Find the value s; such that r; < cdf(x;) -
m(xs) =1
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Regionalized Random Germs Simulations from MPM

@ Examples:

mrk{2(x) mrky?(x)

mrk7r16 (x)
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@ A MPM image is constructed for each spectral class of the
hyperspectral image, i.e., {f\(x), Cx} — mk(x)
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Computation of pdf of contours

@ A MPM image is constructed for each spectral class of the
hyperspectral image, i.e., {f\(x), Cx} — mk(x)

@ To generate M realizations of N regionalized random points i.e.,
Kk M
i (x) = {mrk;*(x)}iZ,
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Computation of pdf of contours

@ A MPM image is constructed for each spectral class of the
hyperspectral image, i.e., {fy(x), Cx} — mx(x)

@ To generate M realizations of N regionalized random points i.e.,
(%) = {mrk (x) 2

o Estimation of the probability density of contours of spectral band A;
with respect to the class Cg, i.e.,

pdfik(x) = Z WS(o(fy;), mrk™)(x) # K (x; Ospatiar).
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Computation of pdf of contours

@ A MPM image is constructed for each spectral class of the
hyperspectral image, i.e., {fy(x), Cx} — mx(x)

@ To generate M realizations of N regionalized random points i.e.,
(%) = {mrk (x) 2

o Estimation of the probability density of contours of spectral band A;
with respect to the class Cg, i.e.,

pdfik(x) = Z WS(o(fy;), mrk™)(x) # K (x; Ospatiar).

@ Probability density of contours of hyperspectral image w.r.t. the
class Cy is obtained as the kernelized sum of the marginal pdf's of
the spectral bands, i.e.,

{fA(x), Ce} > pdf () Zpdfck(x) % KA Ospectrat)-

j=1
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Computation of pdf of contours

e Examples:

2 (x)

mrk*®(x) 516 (x) mrkgi®(x) pdf €2(x)
3l
e/
¥ 7
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Hierarchical Segmentation

o The pdf>(x) could be directly thresholded in order to obtain the
most prominent contours

@ However, the results are only pieces of contours (not enclosing
regions).
@ There is not an optimal threshold to separate the classes of contours.

@ An alternative technique to segment automatically the pdf of the
hyperspectral image in significant closed regions is to apply a
morphological hierarchical algorithm. Mainly, two hierarchical
techniques can be distinguished:

i) Non-parametric waterfalls algorithm;

i) Hierarchies based on extinction values, which allows to select the
minima used in the watershed according to morphological criteria
(dynamics, surface area and volume).

o By selecting a particular level of the hierarchy, contours of the
regions having a higher probability to belong to the final
segmentation than the regions appearing in lower levels are obtained.
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Hierarchical Segmentation

@ Examples of hierarchical segmentation

Image Class 6 - Green pdf <8 (x)

Waterfalls-based Dynamics-based Volumic-based
3 levels 5,10, 20 regions 5,10, 20 regions

)
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Hierarchical Segmentation

@ Examples of hierarchical segmentation

Image Class 8 - Blue pdf <& (x)
; P
—- .i .__1 é
=i L
Waterfalls-based Dynamics-based Volumic-based
3 levels 5,10, 20 regions 5,10, 20 regions

%
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Hierarchical Segmentation

@ Examples of dynamics-based hierarchical segmentation

Image Ground Truth
\ Class 4

Class 1
Class 2

Class 8

Class 5
Class 9

Class 6

Class 3
Class 7

pdf < (x) 25,50, 100 regions pdfcs
R

@

25,50, 100 regions

o
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Hierarchical Segmentation

@ Examples of dynamics-based hierarchical segmentation

Image Ground Truth
\{ Class4

Class 1
Class 2

Class 8

Class 5
Class 9

Class 6

Class 3
Class 7

PdfC;(x) 25,50,100 regions | Unsuperv. pdf(x) 25,50,100 regions
K e 3 .

¢ r'd
»/ °
N ‘'

AN

_

0

5
)

\"a
\rf/‘r
¥ %&
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multivariate images:
o Multivariate morphological segmentation is just the computation of a
vectorial gradient
o Besides the marginal ordering, the vectorial orderings are ad hoc
“cooking recipes”
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Conclusions and Perspectives

® Main idea: Supervised statistical learning for hir, p,)(s) and 7 (x)
@ “Popular’ misconceptions on mathematical morphology for
multivariate images:

o Multivariate morphological segmentation is just the computation of a
vectorial gradient

o Besides the marginal ordering, the vectorial orderings are ad hoc
“cooking recipes”

e Milestones by Jean Serra:

o J. Serra. Anamorphoses and Function Lattices (Multivalued
Morphology). In Mathematical Morphology in Image Processing, E.
Dougherty, Marcel-Dekker, 483-523, 1992.

o J. Serra, M. Mlynarczuk. Morphological merging of
multidimensional data. Proc. of STERMAT 00, pp. 485-390, 2000.

e J. Serra. The “False Colour” Problem. Proc. of the ISMM'09,
LNCS Vol. 5720, 13-23, 2009.

42 /43



Mathematical morphology for hyperspectral images
Conclusions and Perspectives

Conclusions and Perspectives

® Main idea: Supervised statistical learning for hir, p,)(s) and 7 (x)
@ “Popular’ misconceptions on mathematical morphology for
multivariate images:

o Multivariate morphological segmentation is just the computation of a
vectorial gradient

o Besides the marginal ordering, the vectorial orderings are ad hoc
“cooking recipes”

e Milestones by Jean Serra:

o J. Serra. Anamorphoses and Function Lattices (Multivalued
Morphology). In Mathematical Morphology in Image Processing, E.
Dougherty, Marcel-Dekker, 483-523, 1992.

o J. Serra, M. Mlynarczuk. Morphological merging of
multidimensional data. Proc. of STERMAT 00, pp. 485-390, 2000.

e J. Serra. The “False Colour” Problem. Proc. of the ISMM'09,
LNCS Vol. 5720, 13-23, 2009.

o Next:

o (Pseudo-)mathematical morphology for non Euclidean spaces:

Riemannian manifolds, Statistical manifolds

e Banach Lattices and Operators
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More details...

@ S. Velasco-Forero and J. Angulo. “Supervised ordering in R”:
Application to morphological processing of hyperspectral
images’. Submitted to /EEE Transactions on PAMI, 2010.

@ J. Angulo, and S. Velasco-Forero. “Semi-supervised hyperspectral
image segmentation using regionalized stochastic watershed”.
In Proc. of SPIE symposium on Defense, Security, and Sensing:
Algorithms and Technologies for Multispectral, Hyperspectral, and
Ultraspectral Imagery XVI, SPIE Vol. 7695, Orlando, United States,
April 2010.
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