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Hyperspectral Images

Hyperspectral images: A spectral signature for each pixel

of the image
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Hyperspectral Images

Hyperspectral images: Vectorial images

Notation: Let fλ(x) = {fλj
(x)}Lj=1 be a hyperspectral image

fλ : E −→ T L;
x = (x , y) ∈ E ⊂ Z2 are the spatial coordinates of a vector pixel;
Each pixel has associated a vector which corresponds to a spectrum:
fλ(xi ) = sk ;
Space of spectral values is T L ⊂ RL;
Scalar image fλj

(x) corresponds to the channel or band j ,
j ∈ {1, 2, . . . , L}.
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Hyperspectral Images

Hyperspectral images: Examples

(1) �Indian Pines� (2) �Pavia�

(1) Hyperspectral image of the Indian Pines (200 spectral bands in the

400-2500 nm range, 145x145 pixels), obtained by the AVIRIS sensor.

(2) Airbone image from the ROSIS-3 optical sensor of the University of Pavia

(103 spectral bands of 340x610 pixels).
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Hyperspectral Images

Supervised paradigm for hyperspectral image analysis

Fundamental assumption: fλ(x) is composed of K spectral classes:

{C1,C2, · · · ,CK}.

Training set of spectral space: Each spectral class Ck is represented
by a discrete set of nk spectra, i.e.,

Ck ≡ {s1,k , s2,k , · · · , snk ,k},

such that si,k ∈ T L.
Applications: Spectral classi�cation of all pixels, Target detection,
Object segmentation, etc.
Tools: Statistical modelling, pattern classi�cation and machine
learning algorithms.

�≡≡≡≡≡≡≡�

Our methodological aim: Extension of mathematical

morphology operators to hyperspectral images consistent with

the supervised paradigm

8 / 43



Mathematical morphology for hyperspectral images

Hyperspectral Images

Supervised paradigm for hyperspectral image analysis

Fundamental assumption: fλ(x) is composed of K spectral classes:

{C1,C2, · · · ,CK}.

Training set of spectral space: Each spectral class Ck is represented
by a discrete set of nk spectra, i.e.,

Ck ≡ {s1,k , s2,k , · · · , snk ,k},

such that si,k ∈ T L.

Applications: Spectral classi�cation of all pixels, Target detection,
Object segmentation, etc.
Tools: Statistical modelling, pattern classi�cation and machine
learning algorithms.

�≡≡≡≡≡≡≡�

Our methodological aim: Extension of mathematical

morphology operators to hyperspectral images consistent with

the supervised paradigm

8 / 43



Mathematical morphology for hyperspectral images

Hyperspectral Images

Supervised paradigm for hyperspectral image analysis

Fundamental assumption: fλ(x) is composed of K spectral classes:

{C1,C2, · · · ,CK}.

Training set of spectral space: Each spectral class Ck is represented
by a discrete set of nk spectra, i.e.,

Ck ≡ {s1,k , s2,k , · · · , snk ,k},

such that si,k ∈ T L.
Applications: Spectral classi�cation of all pixels, Target detection,
Object segmentation, etc.

Tools: Statistical modelling, pattern classi�cation and machine
learning algorithms.

�≡≡≡≡≡≡≡�

Our methodological aim: Extension of mathematical

morphology operators to hyperspectral images consistent with

the supervised paradigm

8 / 43



Mathematical morphology for hyperspectral images

Hyperspectral Images

Supervised paradigm for hyperspectral image analysis

Fundamental assumption: fλ(x) is composed of K spectral classes:

{C1,C2, · · · ,CK}.

Training set of spectral space: Each spectral class Ck is represented
by a discrete set of nk spectra, i.e.,

Ck ≡ {s1,k , s2,k , · · · , snk ,k},

such that si,k ∈ T L.
Applications: Spectral classi�cation of all pixels, Target detection,
Object segmentation, etc.
Tools: Statistical modelling, pattern classi�cation and machine
learning algorithms.

�≡≡≡≡≡≡≡�

Our methodological aim: Extension of mathematical

morphology operators to hyperspectral images consistent with

the supervised paradigm

8 / 43



Mathematical morphology for hyperspectral images

Hyperspectral Images

Supervised paradigm for hyperspectral image analysis

Fundamental assumption: fλ(x) is composed of K spectral classes:

{C1,C2, · · · ,CK}.

Training set of spectral space: Each spectral class Ck is represented
by a discrete set of nk spectra, i.e.,

Ck ≡ {s1,k , s2,k , · · · , snk ,k},

such that si,k ∈ T L.
Applications: Spectral classi�cation of all pixels, Target detection,
Object segmentation, etc.
Tools: Statistical modelling, pattern classi�cation and machine
learning algorithms.

�≡≡≡≡≡≡≡�

Our methodological aim: Extension of mathematical

morphology operators to hyperspectral images consistent with

the supervised paradigm
8 / 43



Mathematical morphology for hyperspectral images

Supervised ordering in Rp and morphological operators

1 Hyperspectral Images

2 Supervised ordering in Rp and morphological operators

3 Semi-supervised segmentation using regionalized stochastic watershed
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Supervised ordering in Rp and morphological operators

Basic notions

Complete lattice, (L,≤)

A space L endowed with a partial order ≤ is called a complete
lattice, if for every subset H ⊆ L have both supremum (join)

∨
H

and in�mum (meet)
∧
H.

A minimum (smallest) n ∈ H is an element contained in all other
elements of H, i.e., l ∈ H ⇒ n ≤ l . We denote the minimum of L
by ⊥.
A maximum (largest) n in H is an element that contains every
element of H, i.e., l ∈ H ⇒ l ≤ n. We denote the maximum of L
by >.

10 / 43



Mathematical morphology for hyperspectral images

Supervised ordering in Rp and morphological operators

Basic notions

Complete lattice, (L,≤)

A space L endowed with a partial order ≤ is called a complete
lattice, if for every subset H ⊆ L have both supremum (join)

∨
H

and in�mum (meet)
∧
H.

A minimum (smallest) n ∈ H is an element contained in all other
elements of H, i.e., l ∈ H ⇒ n ≤ l . We denote the minimum of L
by ⊥.
A maximum (largest) n in H is an element that contains every
element of H, i.e., l ∈ H ⇒ l ≤ n. We denote the maximum of L
by >.

10 / 43



Mathematical morphology for hyperspectral images

Supervised ordering in Rp and morphological operators

Basic notions

Complete lattice, (L,≤)

A space L endowed with a partial order ≤ is called a complete
lattice, if for every subset H ⊆ L have both supremum (join)

∨
H

and in�mum (meet)
∧
H.

A minimum (smallest) n ∈ H is an element contained in all other
elements of H, i.e., l ∈ H ⇒ n ≤ l . We denote the minimum of L
by ⊥.
A maximum (largest) n in H is an element that contains every
element of H, i.e., l ∈ H ⇒ l ≤ n. We denote the maximum of L
by >.

10 / 43



Mathematical morphology for hyperspectral images

Supervised ordering in Rp and morphological operators

Basic notions

h-ordering

Let R be a nonempty set and L a complete lattice. Furthermore, let

h : R → L,

be a surjective mapping.

We refer by ≤h as the h-ordering given by:

r ≤h r
′ ⇔ h(r) ≤ h(r ′), ∀r , r ′ ∈ R

Note that ≤h preserves re�exivity (r ≤h r) and transitivity (r1 ≤h r2
and r2 ≤h r3 ⇒ r1 ≤h r3 )

But is not a total ordering: An equivalence class is de�ned by
L[z ] = {r ∈ R|h(r) = z}.
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Supervised ordering in Rp and morphological operators

Families of h-mappings

h : Rp → L ≡ R ∪ {−∞,+∞}

Based on (local) projections: Under the �cluster assumption� (local
structures in Rp), di�erent projections can be obtained per cluster,
i.e.,

h(s) =

p∑
i=1

λi
ss

i

Based on (local) adaptive distances: Given the reference (or training)
subset T ⊂ Rp, T = {t1, . . . , t|T |}, with ti ∈ Rp,∀i , we have

h(s) =

|T |∑
i=1

λi
sφ(ti , s)

where φ : Rp × Rp → R+ is a kernel-induced distance and weights
λi
s are �tted for each vector s in Rp

12 / 43
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Supervised ordering in Rp and morphological operators

h-supervised ordering based on kernelized distances

Contribution: To introduce a supervised ordering formulation, based
on both background B and foreground F training sets, which allows
an adequate interpretation of dual morphological operators.

Basic assumption: Given a set R and the subsets B,F ⊂ R, such
that B ∩ F = ∅, we de�ne a h-ordering that satis�es the conditions:

h(s) = ⊥ if s ∈ B

and
h(s) = > if s ∈ F

where ⊥,> are the smallest and largest element in the lattice L.
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Supervised ordering in Rp and morphological operators

Examples of h-orderings in R2

Unsupervised ordering using �rst Supervised ordering using a single reference

principal component: h(s) =
P2

i=1 λi si f (red circle): hf (s) = K(s, f)
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Supervised ordering in Rp and morphological operators

Examples of h-orderings in R2

Supervised ordering using based on Supervised ordering using based on

F = f (red circle) and B = b1(green circle): F = f (red circle) and B = b2(purple circle):

h[f,b1 ](s) =
K(f,s)−K(b1,s)
K(s,s)−K(f,b1) h[f,b2 ](s) =

K(f,s)−K(b2,s)
K(s,s)−K(f,b2)
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Supervised ordering in Rp and morphological operators

Hyperspectral erosion and dilation

Total ordering: The function h[F ,B](s) yields a partial ordering in Rp,
but in practical applications for hyperspectral image processing, a
total ordering is required: the total ordering is induced including a
lexicographic order in L[z ], for all z .

Erosion and dilation: For the hyperspectral image fλ(x), given the
ordering mapping h[F ,B](s) and the structuring element S8<:

ε〈h[F,B],S〉(fλ)(x) = {fλ(y) : h[F ,B] (fλ(y)) =
V ˆ

h[F ,B] (fλ(z))
˜
, z ∈ S(x))},

δ〈h[F,B],S〉(fλ)(x) = {fλ(y) : h[F ,B] (fλ(y)) =
W ˆ

h[F ,B] (fλ(z))
˜
, z ∈ S(x))}.

Duality:
ε〈h[F,B],S〉(fλ) = δ〈h[B,F ],S〉(fλ)

and
ε〈h[F,B],S〉(fλ) = δ〈−h[F,B],S〉(fλ)
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Supervised ordering in Rp and morphological operators

Hyperspectral morphological processing

Hyperspectral erosion and dilation

Original image

fλ(x)

F1 = {swater} (in blue), B1 = {svegetation} (in red)

F2 = {sland } (in blue), B2 = {swater} (in red)
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Supervised ordering in Rp and morphological operators

Hyperspectral morphological processing

Hyperspectral erosion and dilation

Unitary hexagonal erosion ε〈h[F1,B1 ],H〉
(fλ)(x) Unitary hexagonal dilation δ〈h[F1,B1 ],H〉

(fλ)(x)

Morphological gradient δ〈h[F1,B1 ],H〉
(fλ)(x) −h ε〈h[F1,B1 ],H〉

(fλ)(x)
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Supervised ordering in Rp and morphological operators

Hyperspectral morphological processing

Hyperspectral erosion and dilation

Unitary hexagonal erosion ε〈h[F2,B2 ],H〉
(fλ)(x) Unitary hexagonal dilation δ〈h[F2,B2 ],H〉

(fλ)(x)

Morphological gradient δ〈h[F2,B2 ],H〉
(fλ)(x) −h ε〈h[F2,B2 ],H〉

(fλ)(x)
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Supervised ordering in Rp and morphological operators

Hyperspectral morphological processing

Hyperspectral opening

Opening Hex. 4 γ〈h[F1,B1 ],10H〉
(fλ)(x) Top-Hat fλ)(x) −h γ〈h[F1,B1 ],10H〉

(fλ)(x)

Opening Hex. 10 γ〈h[F1,B1 ],10H〉
(fλ)(x) Top-Hat fλ)(x) −h γ〈h[F1,B1 ],10H〉

(fλ)(x)
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Supervised ordering in Rp and morphological operators

Hyperspectral morphological processing

Hyperspectral swamping (geodesic reconstruction)

Original fλ(x) Marker mλ(x)

Geodesic. Recons. γrec〈h[F1,B1 ]〉
(fλ,mλ)(x) Residue fλ)(x) −h γrec〈h[F1,B1 ]〉

(fλ,mλ)(x)
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Supervised ordering in Rp and morphological operators

Hyperspectral morphological processing

Spectral structure extraction

Original fλ(x) and F = f, B = b

ρ+
h[F,∅],5H

(fλ), ρ−
h[F,∅],5H

(fλ) ρ+
h[F,B],5H

(fλ), ρ−
h[F,B],5H

(fλ)
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Supervised ordering in Rp and morphological operators

Hyperspectral morphological processing

Spatial-driven supervised classi�cation

Classif.

Method OA AA

1-to-all Classif. 0.7925 0.8649
1-to-all Classif.-Lev.1 0.8409 0.9136
1-to-all Classif.-Lev.2 0.8472 0.9159
1-to-all Classif.-Lev.3 0.8373 0.8675
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Hyperspectral morphological processing
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Semi-supervised segmentation using regionalized stochastic watershed

1 Hyperspectral Images

2 Supervised ordering in Rp and morphological operators

3 Semi-supervised segmentation using regionalized stochastic watershed

4 Conclusions and Perspectives
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Semi-supervised segmentation using regionalized stochastic watershed

Semi-supervised segmentation using regionalized

stochastic watershed

Aim: Semi-supervised segmentation of hyperspectral images

To obtain in a reliable way the contours of the most signi�cant
spatial structures focussing on a particular spectral class
Using a training dataset of spectra as prior information but without a
deterministic classi�cation

Context: In high spatial resolution images, there are many complex
structures at various scales and the de�nition of a single
segmentation is a challenging di�cult problem

Contribution: MonteCarlo simulations of regionalized germs,
according to a membership probability map, for the computation of
the probability of contours using the stochastic watershed
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Semi-supervised segmentation using regionalized stochastic watershed

Modelling Membership Probability Map of Spectral

Classes

Standard assumption on hyperspectral imaging: each spectral class
follow a normal distribution Ck ≡ N (µk ,Σk). Hence, using Bayesian
terminology, the Gaussian conditional density per class is given by

Pr (si | Ck) =
1

(2π)
L
2 |Σk |

L
2

e−
1
2 (si−µk )TΣ−1

k
(si−µk )

According to the Bayes Decision Rule, the maximum a posteriori
discriminant function becomes (eliminating constant terms, taking
natural logs and assuming also equiprobable priors)

gk (si ) = Pr (Ck | si ) ≈ −
1

2

[
(si − µk)

T Σ−1 (si − µk)
]
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Modelling Membership Probability Map of Spectral

Classes

Membership Probability Map (MPM) of the class Ck , πM
k (x) :

E → R+, is de�ned by

πM
k (x) =

exp

(
− 1

2 [(fλ(x)−µk )TΣ−1
k

(fλ(x)−µk )]
σMPM

)
∑

y∈E exp

(
− 1

2 [(fλ(y)−µk )TΣ−1
k

(fλ(y)−µk )]
σMPM

) .

A high value of πk(x) implies that the image value spectrum fλ(x)
has a high probability to belongs to the class Ck .

The parameter σMPM allows to introduce a scaling regularization of
the distance values (σMPM = 0.1 produces a good trade-o�).

In the experiments of this paper we use only 10 spectral samples as
training set ⇒ Σk is the identity matrix (the computation of the
inverse of covariance matrix Σ−1

k makes no sense and it may
introduce important errors in the distance)
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Regionalized Random Germs Simulations from MPM

Regionalized Poisson Points: Given a density function variable in the
space θ(x) (being a measurable function in Rd , with positive
values), the number of points falling in a borel set B according to a
θ follows a Poisson distribution of parameter θ(D), i.e.,

Pr{N(D) = n} = e−θ(D) (−θ(D))n

n!
.

with θ(D) =
∫

θ(x)dx.

In such a case, if N(D) = n, the n are independently distributed over

D with the probability density function θ̂(x) = θ(x)/θ(D).

Aim: Generating a non-uniform distribution of germs, with a
regionalized pdf associated to class k such that θ̂(x) ≡ πk(x).
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Regionalized Random Germs Simulations from MPM

Algorithm to simulate in m(xi ) a realization of N independent
random germs distributed according to πk(x) using an inverse
transform sampling method:
1. Initialization: m(xi ) = 0 ∀xi ∈ E ; P = Card(E )

2. Compute cumulative distribution function: cdf (xi ) =
P

k≤i πk (xk )PP
k=1

πk (xk )

3. for j = 1 to N
4. rj ∼ U(1,P)
5. Find the value sj such that rj ≤ cdf (xsj ) .
6. m(xsj ) = 1
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Regionalized Random Germs Simulations from MPM

Examples:

π2(x) mrkπ2
1

(x) mrkπ2
2

(x) mrkπ2
50

(x)

· · ·
π16(x) mrkπ16

1
(x) mrkπ16

2
(x) mrkπ16

50
(x)

· · ·
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Computation of pdf of contours

A MPM image is constructed for each spectral class of the
hyperspectral image, i.e., {fλ(x),Ck} 7→ πk(x)

To generate M realizations of N regionalized random points i.e.,
πk(x) 7→ {mrk

πk
i (x)}Mi=1

Estimation of the probability density of contours of spectral band λj

with respect to the class Ck , i.e.,

pdf
Ck
λj

(x) =
1

M

M∑
i=1

WS(%(fλj
),mrk

πk
i )(x) ∗ K (x;σspatial).

Probability density of contours of hyperspectral image w.r.t. the
class Ck is obtained as the kernelized sum of the marginal pdf's of
the spectral bands, i.e.,

{fλ(x),Ck} 7→ pdf Ck (x) =
1

L

L∑
j=1

pdf
Ck
λj

(x) ∗ K (λ;σspectral).
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Computation of pdf of contours

Examples:

π2(x) mrkπ2
1

(x) mrkπ2
2

(x) mrkπ2
50

(x) pdf C2(x)

· · ·
π16(x) mrkπ16

1
(x) mrkπ16

2
(x) mrkπ16

50
(x) pdf C2(x)

· · ·
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Hierarchical Segmentation

The pdf S(x) could be directly thresholded in order to obtain the
most prominent contours

However, the results are only pieces of contours (not enclosing
regions).

There is not an optimal threshold to separate the classes of contours.

An alternative technique to segment automatically the pdf of the
hyperspectral image in signi�cant closed regions is to apply a
morphological hierarchical algorithm. Mainly, two hierarchical
techniques can be distinguished:
i) Non-parametric waterfalls algorithm;
ii) Hierarchies based on extinction values, which allows to select the
minima used in the watershed according to morphological criteria
(dynamics, surface area and volume).

By selecting a particular level of the hierarchy, contours of the
regions having a higher probability to belong to the �nal
segmentation than the regions appearing in lower levels are obtained.
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Hierarchical Segmentation

Examples of hierarchical segmentation

Image Class 6 - Green pdf C6(x)

Waterfalls-based Dynamics-based Volumic-based

3 levels 5, 10, 20 regions 5, 10, 20 regions
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Hierarchical Segmentation

Examples of hierarchical segmentation

Image Class 8 - Blue pdf C8(x)

Waterfalls-based Dynamics-based Volumic-based

3 levels 5, 10, 20 regions 5, 10, 20 regions
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Hierarchical Segmentation

Examples of dynamics-based hierarchical segmentation

Image Ground Truth

pdf C7(x) 25, 50, 100 regions pdf C8(x) 25, 50, 100 regions
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Hierarchical Segmentation

Examples of dynamics-based hierarchical segmentation

Image Ground Truth

pdf C9(x) 25, 50, 100 regions Unsuperv. pdf (x) 25, 50, 100 regions
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Conclusions and Perspectives

Main idea: Supervised statistical learning for h[Fk ,Bk ](s) and πk(x)
�Popular� misconceptions on mathematical morphology for
multivariate images:

Multivariate morphological segmentation is just the computation of a
vectorial gradient
Besides the marginal ordering, the vectorial orderings are ad hoc

�cooking recipes�
Milestones by Jean Serra:

J. Serra. Anamorphoses and Function Lattices (Multivalued
Morphology). In Mathematical Morphology in Image Processing, E.
Dougherty, Marcel-Dekker, 483-523, 1992.
J. Serra, M. Mlynarczuk. Morphological merging of
multidimensional data. Proc. of STERMAT'00, pp. 485-390, 2000.
J. Serra. The �False Colour� Problem. Proc. of the ISMM'09,

LNCS Vol. 5720, 13-23, 2009.
Next:

(Pseudo-)mathematical morphology for non Euclidean spaces:
Riemannian manifolds, Statistical manifolds
Banach Lattices and Operators
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More details...

S. Velasco-Forero and J. Angulo. �Supervised ordering in Rp:

Application to morphological processing of hyperspectral

images�. Submitted to IEEE Transactions on PAMI, 2010.

J. Angulo, and S. Velasco-Forero. �Semi-supervised hyperspectral

image segmentation using regionalized stochastic watershed�.
In Proc. of SPIE symposium on Defense, Security, and Sensing:
Algorithms and Technologies for Multispectral, Hyperspectral, and
Ultraspectral Imagery XVI, SPIE Vol. 7695, Orlando, United States,
April 2010.
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