Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Simple points, critical kernels, and thinning algorithms

Gilles Bertrand

Université Paris-Est Département Informatique, Groupe ESIEE LIGM, Unité Mixte de Recherche CNRS-UPEMLV-ENPC-ESIEE UMR 8049

April 2, 2010

Plan of the presentation

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

> > Combinatorial homotopy (informal)

- Simple points
- Critical Kernels
- Thinning algorithms

Homotopic thinning

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

~ ~ ~ ~ ~ ~

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Intuitively, a point is simple if it can be removed without changing topology

non simple

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Intuitively, a point is simple if it can be removed without changing topology

non simple

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Intuitively, a point is simple if it can be removed without changing topology

non simple

<ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < (

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Intuitively, a point is simple if it can be removed without changing topology

simple

《ロ》 《聞》 《臣》 《臣》 三三 めん(

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Intuitively, a point is simple if it can be removed without changing topology

simple

< □ > < @ > < ≧ > < ≧ > = - のへ(

Combinatorial homotopy (by simple points)

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

We say that an object Y is a retraction of an object X if Y may be obtained from X by a sequence of "simple point deletion".

We say that an object Y is homotopic to an object X if Y may be obtained from X by a sequence of "simple point deletion" or "simple point addition".

Simple point: the 2D case

Simple points, critical kernels, and thinning algorithms	
Gilles Bertrand	Let X be a rectangle and let Y be a retraction of X . If Y has no simple point, then Y is an object which consists in a single point.

Rosenfeld (1970), C. Ronse (1986)

Confluence properties

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Let A, B, C be any three objects such that $C \subset B \subset A$ and let OP be an operator.

Downstream confluence property:

If $A \xrightarrow{OP} B$ and $A \xrightarrow{OP} C$, then $B \xrightarrow{OP} C$.

Upstream confluence property:

If $A \xrightarrow{OP} C$ and $B \xrightarrow{OP} C$, then $A \xrightarrow{OP} C$.

Topological watersheds, G. Bertrand (2005)

Simple points: confluence properties in 2D

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Let A, B, C be any three objects such that $C \subset B \subset A$. The two following confluence properties hold:

N. Passat, M. Couprie, L. Mazo, G. Bertrand (2010)

Simple points: confluence properties

Simple points, critical kernels, and thinning algorithms Gilles Bertrand	
	The 3D case ?

Simple points: confluence properties

These confluence properties are not true in 3D !

<ロ> <回> <回> <三> <三> <三> <三</td>

Bing's house is a counter-example for 3D confluence

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Bing's house has no simple point.

R.H. Bing (1964), E.C. Zeeman (1964)

Bing's house is a counter-example for 3D confluence

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Such configurations may appear in real images !

Percentage *p* of "pathological objects" obtained by randomly generating 10 000 skeletons from a $N \times N \times N$ cube.

Ν	10	20	30	40
р	0,0001	0,0249	0,1739	0,5061

N. Passat, M. Couprie, G. Bertrand (2008)

Combinatorial homotopy

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

A notion which is not easy to handle !

- NP-complete problems
- Undecidable problems
- Poincaré "conjecture"

A. A. Markov (1958), R. Malgouyres and A. R. Francés (2008)

Gilles Bertrand

Simple points

Characterization of simple points

Simple points, critical kernels, and thinning algorithms

The 2D case:

Gilles Bertrand - The notion of connectedness (for both the object and the background) suffices to characterize simple pixels.

- Simple pixels may be characterized by a set of masks.

Characterization of simple points

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

The 3D case: Things are more difficult !

・ロト ・ 母 ・ ・ 由 ・ ・ 由 ・ うへで

Cubical complexes

Elementary collapse

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

■ Let *f* and *g* be two distinct faces such that *f* is the only face of *X* which contains *g*.

The complex $X \setminus \{f, g\}$ is an elementary collapse of X.

J.H.C. Whitehead (1939)

Elementary collapse

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

■ Let *f* and *g* be two distinct faces such that *f* is the only face of *X* which contains *g*.

The complex $X \setminus \{f, g\}$ is an elementary collapse of X.

Observe that f is necessarily a facet, *i.e.*, f is maximal for inclusion.

Elementary collapse

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

■ Let *f* and *g* be two distinct faces such that *f* is the only face of *X* which contains *g*.

The complex $X \setminus \{f, g\}$ is an elementary collapse of X.

Observe that f is necessarily a facet, *i.e.*, f is maximal for inclusion.

Simple points, critical kernels, and					
thinning					
algorithms					
Gilles					
Bertrand					

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < @

Simple points,			
critical kernels, and			
thinning			
algorithms			
algorithms			
Gilles			
Bertrand			

・ロット 4 聞 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 >

Simple points, critical kernels, and			
thinning			
algorithms			
Gilles			
Bertrand			

◆ロ > ◆母 > ∢ 回 > ∢ 回 > → 回 → � Q Q

Simple points, critical kernels, and thinning		
algorithms		
Gilles Bertrand		
Dertrand		

◆ロ > ◆母 > ∢ 回 > ∢ 回 > → 回 → � Q Q

Simple points, critical kernels, and thinning algorithms	
algorithins	
Gilles	
Bertrand	

◆ロ > ◆母 > ∢ 回 > ∢ 回 > → 回 → � Q Q

Simple points, critical kernels, and thinning	
algorithms	
Gilles Bertrand	

Simple points, critical kernels, and			
thinning algorithms			
algorithms			
Gilles			
Bertrand			

Collapse sequence

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

■ Let X, Y be two complexes. We say that X collapses onto Y if there exists a collapse sequence from X to Y.

スロンス語 (中国) (日) (日)

Detachment

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

The detachment operation (denoted by \odot) "removes" a facet from a complex, yielding a new complex.

Definition of simple facets

Gilles Bertrand

Definition of simple facets

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

This new definition generalizes all previous definitions. It works for objects of arbitrary dimensions.

Higher dimensions

$f \cap X$ is a Bing's house and f is simple for $X \cup f$

Higher dimensions

M. Couprie and G. Bertrand (2009): this kind of configuration may happen in 5D (but not in 4D) !

Extension of simple points: simple pairs

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

The voxels x and y are both not simple. Nevertheless we can remove x and y without changing the topology of the object.

N. Passat, M. Couprie and G. Bertrand (2008)

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Critical kernels

A framework for the study of parallel thinning

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Parallel removal of simple points may alter topology.

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Parallel removal of simple points may alter topology.

Milestones

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

■ 1966: D. Rutovitz – first parallel thinning algorithm

1970: A. Rosenfeld – digital topology

■ 1988: C. Ronse – minimal non-simple sets

■ 1995: G. Bertrand – P-simple points

2005: G. Bertrand – Critical kernels

Motivation

Simple points, critical kernels, and thinning algorithms

- To be able to thin objects in a regular and symmetric way.
- To be able to have well-defined skeletons, *i.e*, to have skeletons which are unique and which do not depend on the order of the simple points selection.
- Of course, parallelism may also be used for faster computations.

Critical kernels: key notions

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

The 2-face is not essential

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Core

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

The core of f is the complex, denoted by Core(f, X), composed by all the essential faces which are strictly included in f, and all the faces included in these faces.

A 3-face and its core

Core

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

The core of f is the complex, denoted by Core(f, X), composed by all the essential faces which are strictly included in f, and all the faces included in these faces.

A 3-face and its core

Core

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

The core of f is the complex, denoted by Core(f, X), composed by all the essential faces which are strictly included in f, and all the faces included in these faces.

A 2-face and its core

Regular/critical face

Simple points, critical kernels, and thinning algorithms

- We say that f is regular if f is essential and if \hat{f} collapses onto Core(f, X).
- We say that f is critical if f is essential and not regular.

Regular/critical face

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

• We say that f is regular if f is essential and if \hat{f} collapses onto Core(f, X).

• We say that f is critical if f is essential and not regular.

Regular/critical face

Simple points, critical kernels, and thinning algorithms

- We say that f is regular if f is essential and if \hat{f} collapses onto Core(f, X).
- We say that f is critical if f is essential and not regular.

Critical kernel

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

• We set $Critic(X) = \bigcup \{\hat{f} \mid f \text{ is critical }\}, Critic(X) \text{ is the critical kernel of } X.$

Critical kernel

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

• We set $Critic(X) = \bigcup \{\hat{f} \mid f \text{ is critical }\}, Critic(X) \text{ is the critical kernel of } X.$

The critical kernel of X

Main theorem

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

In any dimension, X collapses onto the critical kernel of X. Furthermore, if Y is any set of facets of X such that Y contains the critical kernel of X, then X collapses onto Y.

G. Bertrand (2007)

Main theorem

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

In any dimension, X collapses onto the critical kernel of X. Furthermore, if Y is any set of facets of X such that Y

contains the critical kernel of X, then X collapses onto Y.

This theorem leads to a wide class of topologically correct n-D parallel thinning algorithms, based on the different possible choices of the set Y.

Crucial kernels: motivation

In the following, we assume that X is a set of voxels (*i.e.*, a complex in which each principal face is a 3-face).

Crucial kernel

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

The crucial kernel of a complex X is the set of all facets of X which contain a maximal face of the critical kernel of X. Thus X collapses onto its crucial kernel.

Gilles Bertrand

Thinning algorithms

Constrained \mathcal{K} -skeleton

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

Definition

- Let S be a set of *n*-xels and let $K \subseteq S$.
- We denote by *Cruc*(*S*, *K*) the set composed of all *n*-xels which are in the crucial kernel of *S* or which are in *K*.
- Let $\langle S_0, S_1, ..., S_k \rangle$ be the unique sequence such that $S_0 = S$, $S_i = Cruc(S_{i-1}, K)$, i = 1, ..., k and $S_k = Cruc(S_k, K)$.

• The set S_k is the \mathcal{K} -skeleton of S constrained by K.

G. Bertrand and M. Couprie (2008)

Minimal \mathcal{K} -skeleton

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

As far as we know, this is the first fully parallel algorithm for minimal skeletons

Local conditions (2D) for crucial pixels

Simple points, critical kernels, and thinning algorithms Gilles Bertrand					
	AA PP BB C	$ \begin{array}{c} 0 \\ p \\ p \\ 0 \end{array} \\ C_1 \end{array} $	$ \begin{array}{c} 0 & 0 \\ \hline P & P \\ 0 & 0 \end{array} $ $ C_2 $	$ \begin{array}{c} 0 & 0 \\ 0 & P & P \\ 0 & P & 0 \end{array} $ $ \begin{array}{c} C_3 \end{array} $	$ \begin{array}{c} 0 & 0 \\ 0 & P & P & 0 \\ 0 & P & P & 0 \\ 0 & 0 & 0 \\ \hline C_4 \end{array} $

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

\mathcal{K} -skeleton constrained by the medial axis

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

We set K = MedialAxis(X)

Medial axis

Constrained skeleton

Minimal 2D \mathcal{K} -skeleton in the 3D grid

3D Skeletons: minimal skeleton

G. Bertrand and M. Couprie (2006): New 3D parallel thinning algorithms

3D Skeletons: surface skeletons

G. Bertrand and M. Couprie (2006): New 3D parallel thinning algorithms

3D Skeletons: curvilinear skeletons

G. Bertrand and M. Couprie (2006): New 3D parallel thinning algorithms

Simple points, critical kernels, and thinning algorithms

> Gilles Bertrand

A new definition of simple points

- New sound 2D and 3D thinning algorithms
- Order independent skeletons
- A generic thinning scheme
- Analysis of existing thinning algorithms
- A generalization of minimal non-simple sets and P-simple points

Simple points, critical kernels, and thinning algorithms

- A new definition of simple points
- New sound 2D and 3D thinning algorithms
- Order independent skeletons
- A generic thinning scheme
- Analysis of existing thinning algorithms
- A generalization of minimal non-simple sets and P-simple points

Simple points, critical kernels, and thinning algorithms

- A new definition of simple points
- New sound 2D and 3D thinning algorithms
- Order independent skeletons
- A generic thinning scheme
- Analysis of existing thinning algorithms
- A generalization of minimal non-simple sets and P-simple points

Simple points, critical kernels, and thinning algorithms

- A new definition of simple points
- New sound 2D and 3D thinning algorithms
- Order independent skeletons
- A generic thinning scheme
- Analysis of existing thinning algorithms
- A generalization of minimal non-simple sets and P-simple points

Simple points, critical kernels, and thinning algorithms

- A new definition of simple points
- New sound 2D and 3D thinning algorithms
- Order independent skeletons
- A generic thinning scheme
- Analysis of existing thinning algorithms
- A generalization of minimal non-simple sets and P-simple points

Simple points, critical kernels, and thinning algorithms

- A new definition of simple points
- New sound 2D and 3D thinning algorithms
- Order independent skeletons
- A generic thinning scheme
- Analysis of existing thinning algorithms
- A generalization of minimal non-simple sets and P-simple points

