Simple points, critical kernels, and thinning algorithms Gilles Bertrand

Simple points, critical kernels, and thinning algorithms

Gilles Bertrand
Université Paris-Est
Département Informatique, Groupe ESIEE
LIGM, Unité Mixte de Recherche CNRS-UPEMLV-ENPC-ESIEE UMR 8049

April 2, 2010

Plan of the presentation

Simple points, critical
kernels, and
thinning
algorithms
Gilles
Bertrand

■ Combinatorial homotopy (informal)

- Simple points
- Critical Kernels
- Thinning algorithms

Homotopic thinning

Simple points, critical
kernels, and
thinning
algorithms
Gilles
Bertrand

Simple point

Gilles
Bertrand

Intuitively, a point is simple if it can be removed without changing topology

non simple

Simple point

Gilles
Bertrand

Intuitively, a point is simple if it can be removed without changing topology

non simple

Simple point

Gilles
Bertrand

Intuitively, a point is simple if it can be removed without changing topology

non simple

Simple point

Gilles
Bertrand

Intuitively, a point is simple if it can be removed without changing topology

simple

Simple point

Gilles
Bertrand

Intuitively, a point is simple if it can be removed without changing topology

simple

Combinatorial homotopy (by simple points)

Simple points,
critical
kernels, and
thinning
algorithms
Gilles
Bertrand

We say that an object Y is a retraction of an object X if Y may be obtained from X by a sequence of "simple point deletion".

We say that an object Y is homotopic to an object X if Y may be obtained from X by a sequence of "simple point deletion"" or "simple point addition".

Simple point: the 2D case

Simple points critical
kernels, and
thinning
algorithms
Gilles
Bertrand

Let X be a rectangle and let Y be a retraction of X. If Y has no simple point, then Y is an object which consists in a single point.

Rosenfeld (1970), C. Ronse (1986)

Confluence properties

Simple points,
critical kernels, and thinning algorithms

Gilles
Bertrand

Let A, B, C be any three objects such that $C \subset B \subset A$ and let $O P$ be an operator.
Downstream confluence property:
If $A \xrightarrow{O P} B$ and $A \xrightarrow{O P} C$, then $B \xrightarrow{O P} C$.
Upstream confluence property:
If $A \xrightarrow{O P} C$ and $B \xrightarrow{O P} C$, then $A \xrightarrow{O P} C$.

Topological watersheds, G. Bertrand (2005)

Simple points: confluence properties in 2D

Gilles

Bertrand

Let A, B, C be any three objects such that $C \subset B \subset A$.
The two following confluence properties hold:

N. Passat, M. Couprie, L. Mazo, G. Bertrand (2010)

Simple points: confluence properties

Simple points, critical
kernels, and
thinning
algorithms
Gilles
Bertrand

The 3D case ?

Simple points: confluence properties

Simple points, critical
kernels, and
thinning
algorithms
Gilles
Bertrand

These confluence properties are not true in 3D !

Bing's house

Simple points, critical kernels, and thinning algorithms

Gilles Bertrand

Bing's house is a counter-example for 3D confluence

Simple points,
critical
kernels, and
thinning
algorithms
Gilles
Bertrand

Bing's house has no simple point.

R.H. Bing (1964), E.C. Zeeman (1964)

Bing's house is a counter-example for 3D confluence

Simple points,
critical
kernels, and
thinning
algorithms
Gilles
Bertrand

Such configurations may appear in real images !

Percentage p of "pathological objects" obtained by randomly generating 10000 skeletons from a $N \times N \times N$ cube.

N	10	20	30	40
p	0,0001	0,0249	0,1739	0,5061

N. Passat, M. Couprie, G. Bertrand (2008)

Combinatorial homotopy

A notion which is not easy to handle !
Gilles
Bertrand

- NP-complete problems
- Undecidable problems
- Poincaré "conjecture"
A. A. Markov (1958), R. Malgouyres and A. R. Francés (2008)

$$
\begin{aligned}
& \text { Simple points, } \\
& \text { critical } \\
& \text { kernels, and } \\
& \text { thinning } \\
& \text { algorithms } \\
& \text { Gilles } \\
& \text { Bertrand }
\end{aligned}
$$

Characterization of simple points

Simple points,
critical
kernels, and
thinning
algorithms
Gilles
Bertrand

The 2D case:

- The notion of connectedness (for both the object and the background) suffices to characterize simple pixels.
- Simple pixels may be characterized by a set of masks.

Characterization of simple points

Gilles
Bertrand

The 3D case:
Things are more difficult!

Cubical complexes

Simple points,
critical kernels, and thinning algorithms

Gilles
Bertrand

A complex is a set of faces which are "glued together".

A complex:

H. Poincaré (1895)

Elementary collapse

Simple points,
critical kernels, and thinning algorithms

Gilles
Bertrand

- Let f and g be two distinct faces such that f is the only face of X which contains g.
■ The complex $X \backslash\{f, g\}$ is an elementary collapse of X.

J.H.C. Whitehead (1939)

Elementary collapse

Simple points,
critical
kernels, and
thinning
algorithms
Gilles
Bertrand

- Let f and g be two distinct faces such that f is the only face of X which contains g.
■ The complex $X \backslash\{f, g\}$ is an elementary collapse of X.

Observe that f is necessarily a facet, i.e., f is maximal for inclusion.

Elementary collapse

Simple points,
critical kernels, and thinning
algorithms
Gilles
Bertrand

- Let f and g be two distinct faces such that f is the only face of X which contains g.
- The complex $X \backslash\{f, g\}$ is an elementary collapse of X.

Observe that f is necessarily a facet, i.e., f is maximal for inclusion.

Collapse preserves topology

Gilles
Bertrand

Collapse preserves topology

Gilles
Bertrand

Collapse preserves topology

Gilles
Bertrand

Collapse preserves topology

Simple points, critical
kernels, and thinning algorithms

Gilles
Bertrand

Collapse preserves topology

Simple points, critical
kernels, and thinning algorithms

Gilles
Bertrand

Collapse preserves topology

Simple points, critical
kernels, and thinning algorithms

Gilles
Bertrand

Collapse preserves topology

Gilles
Bertrand

Collapse sequence

Simple points,
critical kernels, and thinning algorithms

Gilles
Bertrand

- Let X, Y be two complexes. We say that X collapses onto Y if there exists a collapse sequence from X to Y.

Detachment

Gilles
Bertrand

The detachment operation (denoted by Q) "removes" a facet from a complex, yielding a new complex.

X

$X \otimes f$

$X \otimes f$

Definition of simple facets

critical kernels, and thinning algorithms

Gilles
Bertrand

Let f be a facet, we say that f is simple if X collapses onto $X \otimes f$.

The facet f is simple.
G. Bertrand (2007)

Definition of simple facets

Simple points,
critical
kernels, and
thinning
algorithms
Gilles
Bertrand
This new definition generalizes all previous definitions.
It works for objects of arbitrary dimensions.

Higher dimensions

$f \cap X$ is a Bing's house and f is simple for $X \cup f$

Higher dimensions

Simple points, critical kernels, and thinning algorithms

Gilles
Bertrand

M. Couprie and G. Bertrand (2009): this kind of configuration may happen in 5D (but not in 4D)!

Extension of simple points: simple pairs
critical
kernels, and
thinning
algorithms
Gilles
Bertrand

The voxels x and y are both not simple. Nevertheless we can remove x and y without changing the topology of the object.

Simple points, critical
 kernels, and
 thinning
 algorithms
 Gilles
 Bertrand
 Critical kernels

A framework for the study of parallel thinning

Simple points, critical kernels, and thinning algorithms

Gilles Bertrand

Parallel removal of simple points may alter topology.

Simple points, critical kernels, and thinning algorithms

Gilles Bertrand

Parallel removal of simple points may alter topology.

Milestones

■ 1966: D. Rutovitz - first parallel thinning algorithm

- 1970: A. Rosenfeld - digital topology
- 1988: C. Ronse - minimal non-simple sets
- 1995: G. Bertrand - P-simple points
- 2005: G. Bertrand - Critical kernels

Motivation

Simple points, critical kernels, and thinning algorithms

Gilles
Bertrand

- To be able to thin objects in a regular and symmetric way.
- To be able to have well-defined skeletons, i.e, to have skeletons which are unique and which do not depend on the order of the simple points selection.
- Of course, parallelism may also be used for faster computations.

Critical kernels: key notions

Simple points, critical
kernels, and
thinning
algorithms
Gilles
Bertrand

This framework is based on only three notions:
■ Essential face

- Core of a face
- Regular/critical face

Essential face

critical
kernels, and
thinning
algorithms
Gilles
Bertrand

We say that f is an essential face if f is precisely the intersection of all facets of X which contain f. Note: Any facet is essential.

The 2-face is not essential

Essential face

critical
kernels, and
thinning
algorithms
Gilles
Bertrand

We say that f is an essential face if f is precisely the intersection of all facets of X which contain f. Note: Any facet is essential.

The 2 -face is essential

Essential face

critical kernels, and
thinning
algorithms
Gilles
Bertrand

We say that f is an essential face if f is precisely the intersection of all facets of X which contain f. Note: Any facet is essential.

The 1 -face is not essential

Essential face

critical kernels, and
thinning
algorithms
Gilles
Bertrand

We say that f is an essential face if f is precisely the intersection of all facets of X which contain f. Note: Any facet is essential.

The 1-face is essential

Essential face

critical kernels, and
thinning
algorithms
Gilles
Bertrand

We say that f is an essential face if f is precisely the intersection of all facets of X which contain f. Note: Any facet is essential.

The 0 -face is not essential

Essential face

critical kernels, and
thinning
algorithms
Gilles
Bertrand

We say that f is an essential face if f is precisely the intersection of all facets of X which contain f. Note: Any facet is essential.

The 0-face is essential

Core

Simple points,
critical
kernels, and
thinning
algorithms
Gilles
Bertrand

■ The core of f is the complex, denoted by Core (f, X), composed by all the essential faces which are strictly included in f, and all the faces included in these faces.

A 3-face and its core

Core

Simple points,
critical
kernels, and
thinning
algorithms
Gilles
Bertrand

■ The core of f is the complex, denoted by Core (f, X), composed by all the essential faces which are strictly included in f, and all the faces included in these faces.

A 3-face and its core

Core

Simple points,
critical
kernels, and
thinning
algorithms
Gilles
Bertrand

- The core of f is the complex, denoted by Core (f, X), composed by all the essential faces which are strictly included in f, and all the faces included in these faces.

A 2-face and its core

Regular/critical face

Simple points,
critical kernels, and
thinning
algorithms
Gilles
Bertrand

- We say that f is regular if f is essential and if \hat{f} collapses onto $\operatorname{Core}(f, X)$.
- We say that f is critical if f is essential and not regular.

The 3-face is regular

Regular/critical face

Simple points,
critical kernels, and
thinning
algorithms
Gilles
Bertrand

- We say that f is regular if f is essential and if \hat{f} collapses onto $\operatorname{Core}(f, X)$.
- We say that f is critical if f is essential and not regular.

The 3-face is critical

Regular/critical face

Simple points,
critical kernels, and
thinning
algorithms
Gilles
Bertrand

- We say that f is regular if f is essential and if \hat{f} collapses onto $\operatorname{Core}(f, X)$.
- We say that f is critical if f is essential and not regular.

The 2-face is critical

Critical kernel

Simple points,
critical
kernels, and
thinning
algorithms
Gilles
Bertrand

- We set $\operatorname{Critic}(X)=\cup\{\hat{f} \mid f$ is critical $\}$, $\operatorname{Critic}(X)$ is the critical kernel of X.

A complex X

Critical kernel

Simple points,
critical kernels, and thinning algorithms

Gilles
Bertrand

- We set $\operatorname{Critic}(X)=\cup\{\hat{f} \mid f$ is critical $\}$, $\operatorname{Critic}(X)$ is the critical kernel of X.

Main theorem

Simple points, critical kernels, and thinning algorithms

Gilles
Bertrand

In any dimension, X collapses onto the critical kernel of X.

Furthermore, if Y is any set of facets of X such that Y contains the critical kernel of X, then X collapses onto Y.

G. Bertrand (2007)

Main theorem

Simple points,
critical kernels, and thinning algorithms

Gilles
Bertrand

In any dimension, X collapses onto the critical kernel of X.
Furthermore, if Y is any set of facets of X such that Y
contains the critical kernel of X, then X collapses onto Y.

This theorem leads to a wide class of topologically correct n-D parallel thinning algorithms, based on the different possible choices of the set Y.

Crucial kernels: motivation

Simple points,
critical
kernels, and
thinning
algorithms
Gilles
Bertrand

The critical kernel of a set of voxels is not always a set of voxels

In the following, we assume that X is a set of voxels (i.e., a complex in which each principal face is a 3-face).

Crucial kernel

Simple points,
critical kernels, and thinning algorithms

Gilles
Bertrand

The crucial kernel of a complex X is the set of all facets of X which contain a maximal face of the critical kernel of X. Thus X collapses onto its crucial kernel.


```
Simple points,
    critical
    kernels, and
    thinning
    algorithms
Gilles
Bertrand
```


Thinning algorithms

Constrained \mathcal{K}-skeleton

Simple points,
critical
kernels, and
thinning
algorithms
Gilles
Bertrand

Definition

- Let S be a set of n-xels and let $K \subseteq S$.
- We denote by Cruc (S, K) the set composed of all n-xels which are in the crucial kernel of S or which are in K.
- Let $\left\langle S_{0}, S_{1}, \ldots, S_{k}\right\rangle$ be the unique sequence such that $S_{0}=S, S_{i}=\operatorname{Cruc}\left(S_{i-1}, K\right), i=1, \ldots, k$ and $S_{k}=\operatorname{Cruc}\left(S_{k}, K\right)$.
- The set S_{k} is the \mathcal{K}-skeleton of S constrained by K.
G. Bertrand and M. Couprie (2008)

Minimal \mathcal{K}-skeleton

Simple points, critical kernels, and thinning algorithms

Gilles
Bertrand

We set $K=\emptyset$

As far as we know, this is the first fully parallel algorithm for minimal skeletons

Local conditions (2D) for crucial pixels

Simple points,
critical
kernels, and
thinning
algorithms
Gilles
Bertrand

\mathcal{K}-skeleton constrained by the medial axis

Simple points,
critical
kernels, and
thinning
algorithms
Gilles
Bertrand

$$
\text { We set } K=\text { MedialAxis }(X)
$$

Minimal 2D \mathcal{K}-skeleton in the 3D grid

Object S

Minimal \mathcal{K}-skeleton of S
G. Bertrand and M. Couprie (2008): 10 new 2D parallel thinning algorithms

3D Skeletons: minimal skeleton

Simple points, critical kernels, and thinning algorithms

Gilles
Bertrand

G. Bertrand and M. Couprie (2006): New 3D parallel thinning algorithms

3D Skeletons: surface skeletons

Simple points, critical kernels, and thinning algorithms

Gilles
Bertrand

G. Bertrand and M. Couprie (2006): New 3D parallel thinning algorithms

3D Skeletons: curvilinear skeletons

Simple points, critical kernels, and thinning algorithms

Gilles
Bertrand

G. Bertrand and M. Couprie (2006): New 3D parallel thinning algorithms

Conclusion

Gilles Bertrand

- A new definition of simple points
\square New sound 2D and 3D thinning algorithms
\square Order independent skeletons
- A generic thinning scheme
\square Analysis of existing thinning algorithms
- A generalization of minimal non-simple sets and P-simple points

Conclusion

Gilles
Bertrand

- A new definition of simple points
- New sound 2D and 3D thinning algorithms
- Order independent skeletons
- A generic thinning scheme
- Analysis of existing thinning algorithms
- A generalization of minimal non-simple sets and P-simple points

Conclusion

Simple points, critical
kernels, and
thinning
algorithms
Gilles
Bertrand

- A new definition of simple points
- New sound 2D and 3D thinning algorithms

■ Order independent skeletons

- A generic thinning scheme
- Analysis of existing thinning algorithms
- A generalization of minimal non-simple sets and P-simple points

Conclusion

Simple points, critical
kernels, and
thinning
algorithms
Gilles
Bertrand

- A new definition of simple points
- New sound 2D and 3D thinning algorithms
- Order independent skeletons
- A generic thinning scheme
- Analysis of existing thinning algorithms
- A generalization of minimal non-simple sets and P-simple points

Conclusion

- A new definition of simple points
- New sound 2D and 3D thinning algorithms
- Order independent skeletons
- A generic thinning scheme

■ Analysis of existing thinning algorithms

- A generalization of minimal non-simple sets and P-simple points

Conclusion

- A new definition of simple points
- New sound 2D and 3D thinning algorithms

■ Order independent skeletons

- A generic thinning scheme
- Analysis of existing thinning algorithms
- A generalization of minimal non-simple sets and P-simple points

Simple points, critical
kernels, and thinning algorithms

Gilles Bertrand

