Image Curvature Microscope

An Image Curvature Microscope

Jean-Michel MOREL Joint work with Adina CIOMAGA and Pascal MONASSE

Centre de Mathématiques et de Leurs Applications, Ecole Normale Supérieure de Cachan

> Séminaire Jean Serra - 70 ans April 2, 2010

Image Curvature Microscope

Overview

2 Curvature scale space

Image Curvature Microscope

Role of Curvature in Visual Perception

Image Curvature Microscope

Image interpolations

Digital images can be modeled as

• piecewise constant functions. (block interpolation)

$$u = u_d * \chi_{[-\frac{1}{2}, \frac{1}{2}]}$$

 continuous functions, taking the given values at the centers of the pixels and being affine on the corresponding edges (*bilinear interpolation*)

$$u = u_d * \chi_{[-1,1]}(1 - |\cdot|)$$

• higher order spline interpolations.

Image Curvature Microscope A morphological image representation in terms of level lines

Bilinear tree of level lines

Bilinear interpolation in a dual pixel can locally be written as

$$u(x, y) = axy + bx + xy + d$$

where the parameters a, b, c, d are given by the values taken at four adjacent pixels. Level lines then are then concatenations of pieces of hyperbole and straight lines.

Image Curvature Microscope A morphological image representation in terms of level lines

Bilinear tree of level lines

 One can decompose an image into its level lines at quantized levels.

 $\mathcal{T} = \{\Sigma^{\lambda,i}\}_{\lambda \in \Lambda, i \in F_{\lambda}};$

• The set is ordered in a tree structure, induced by the geometrical inclusion.

Algorithm (Monasse Guichard '98)

A fast algorithm, the Fast Level Set Transform (FLST) performs the decomposition of an image into a tree of shapes (subsequently, in a tree of level lines).

Image Curvature Microscope A morphological image representation in terms of level lines

Image reconstruction

Algorithm (C., Monasse, Morel, '09)

Construct an image from its topographic map

- walk the tree in pre-order (parent before children)
- fill the interior of the current level line $\Sigma = \{P_k(x_k, y_k)\}_{1 \le k \le N} \text{ with its level } \lambda:$
 - find intersections of the boundary with all horizontal lines of equation y = i and write the abscissas in an ordered set
 - a pixel (j, i) is inside the polygon if and only if j is within an interval [xⁱ_{2k+1}, xⁱ_{2k+2}].

Image Curvature Microscope A morphological image representation in terms of level lines

Image Reconstruction

Jean-Michel MOREL CMLA, ENS de Cachan Séminaire Jean Serra - 70 ans

Image Curvature Microscope A morphological image representation in terms of level lines

Image Reconstruction

Image Curvature Microscope

Curvatures in digital images

The scalar curvature of a C^2 image at a nonsingular point $\mathbf{x_0}$ is defined by

$$\operatorname{curv}(u)(\mathbf{x_0}) = \frac{u_{xx}u_y^2 - 2u_{xy}u_xu_y + u_{yy}u_x^2}{(u_x^2 + u_y^2)^{3/2}}(\mathbf{x_0}).$$
(1)

This scalar curvature at $\mathbf{x_0}$ is linked to the vectorial curvature $\kappa(\mathbf{x_0})$ of the level line passing by $\mathbf{x_0}$ via

$$\kappa(\mathbf{x_0}) = -\operatorname{curv}(u)(\mathbf{x_0}) \cdot \frac{Du}{|Du|}(\mathbf{x_0}).$$
(2)

Thus, curvatures in digital images can be computed in two quite different ways.

Image Curvature Microscope

Multiscale curvature

A previous smoothing is necessary, which introduces a new parameter, the smoothing *scale*. Hence the notion of *curvature scale space* which will be associated with curve or image evolutions.

Problem

Smoothing algorithms in the computer vision literature deal with either

- level lines: curve/affine shortenings
- level sets: threshold dynamics
- or with the image itself: FDSs and stack filters

Image Curvature Microscope

Curvature Flows

- Data: closed curve Γ₀
- Perform curvature driven flows

$$\Sigma_0 \mapsto \Sigma_t$$
$$\frac{\partial x}{\partial t} = |k|^{\sigma - 1} k \overrightarrow{n}$$

Questions

- well posedness; existence and regularity of solutions ;
- numerical approximation schemes;
- preserve morphological properties.

Image Curvature Microscope

Local heat equation ?

Figure: Curve evolution by the heat equation. The evolving curve can, however, develop self-crossings (as in C) or singularities (as in D).

Image Curvature Microscope

Dynamic curve evolution: nonlocal heat equation

Algorithm (Mackworth Mockhtarian '92)

• Convolve the curve x_n , parameterized by its length parameter $s_n \in [0, L_n]$, with a Gaussian G_h , where h is small.

$$x_{n+1}(s_n) = G_h * x_n(s_n).$$

• Reparametrize x_{n+1} by its length parameter $s_{n+1} \in [0, L_{n+1}]$.

Image Curvature Microscope

Dynamic curve evolution: nonlocal heat equation!

Figure: Curve evolution by the renormalized heat equation. The evolved curve is smooth for all times, eventually becomes convex and shrinks to a point.

Image Curvature Microscope

Level set methods

Algorithm (Stack filter and threshold dynamics)

 Decompose u₀ in its upper level sets and consider the characteristic function χ_λ(·) of each upper level set X_λu₀;

$$u_0 \mapsto \{X_\lambda u_0\}_\lambda.$$

• Solve mean curvature motion for $\chi_{\lambda}(\cdot)$ until the scale t.

$$\psi_{\lambda}(t,\cdot) = FDS(\chi(\cdot))(t).$$

• Get back the image by thresholding

$$u(t,x) = \lambda, \forall x \text{ s.t. } \psi_{\lambda}(x) \geq 1/2.$$

Image Curvature Microscope

Level set methods

Figure: Level set method (BMO algorithm) for mean curvature evolution, at renormalized scale I = 2.

Image Curvature Microscope

Level set methods

Figure: Level set method (BMO algorithm) for mean curvature evolution, at renormalized scale I = 2.

Image Curvature Microscope

Level Lines Shortening

Subpixel algorithm based on the topological structure of the level lines

The scheme is monotonous and therefore ensures level lines order preserving.

Image Curvature Microscope

Level lines Shortening

Algorithm (C., Monasse, Morel, '10)

Perform the LLS evolution of u_0 at scale t:

- Extract the tree of level lines $\{\Sigma_0^{\lambda,i}\}_{\{i\in F_\lambda,\lambda\}}$;
- Smooth each level line separately

$$\Sigma_t^{\lambda,i}=\ {\it Curve\ Shortening\ Flow\ }(\Sigma_0^{\lambda,i})$$

 Reconstruct the image by filling the interior laminas bounded by each level line Σ^{λ,i}_t;

Image Curvature Microscope

Image Curvature Microscope

Image Curvature Microscope

Image Curvature Microscope

Image Curvature Microscope

Level lines Shortening

Theorem

(C., Morel '10) Let $u_0 \in Lip(\Omega)$. Then $u(x, t) : \Omega \times [0, \infty) \to \mathbb{R}$ defined by the Level Lines Shortening evolution of u_0

$$u(x,t) = LLS(t)u_0(x), \forall x \in \mathbb{R}^2, \forall t \in [0,\infty)$$

is a viscosity solution for the mean curvature PDE, with the initial data u_0 :

$$\begin{cases} u_t = (\delta_{ij} - \frac{u_{x_i}u_{x_j}}{|Du|^2})u_{x_ix_j}, & \text{in } \mathbb{R}^2 \times [0,\infty) \\ u(\cdot,0) = u_0, & \text{on } \mathbb{R}^2. \end{cases}$$
(3)

Image Curvature Microscope

Local comparison principle and regularity

Figure: Original image and its level lines

Image Curvature Microscope

Local comparison principle and regularity

Figure: Level Lines Shortening

Image Curvature Microscope

Local comparison principle and regularity

Figure: Finite difference scheme

Image Curvature Microscope

Local comparison principle and regularity

Figure: Stack filter and theshold dynamics

Image Curvature Microscope

JPEG artifacts reduction on color images

Figure: Original image, suffering of JPEG artifacts such as Gibbs oscillations, staircase noise along curving edges and checkerboarding.

Image Curvature Microscope

JPEG artifacts reduction on color images

Figure: LLAS is applied separately to each RGB channel. Although diffusions occur at junctions, LLAS considerably reduces these artifacts.

Image Curvature Microscope

Curvatures computed directly on level lines

Figure: The curvature color display rule. Initial image, FDS and LLS.

Image Curvature Microscope

Discrete curvature for a polygonal line.

We recall that each level line is stored as a set of ordered points

$$\Sigma = \{P_i(x_i, y_i)\}_{i=0..n}, \text{ with } P_0 = P_n.$$

The discrete scalar curvature k_i computed at each vertex P_i is obtained as the inverse of the circumscribed radius R_i of the triangle $P_{i-1}P_iP_{i+1}$.

Lemma

The curvature at vertex P_i is given by

$$k_i = 2 \frac{u_i^1 u_{i+1}^2 - u_i^2 u_{i+1}^1}{u_i u_{i+1} v_i}.$$

(4)

Image Curvature Microscope

Subpixel curvature algorithm

Algorithm (C., Monasse, Morel, '10)

Compute the image curvature microscop

- Extract the tree of level lines $\{\Sigma_0^{\lambda,i}\}_{\{i\in F_\lambda,\lambda\}};$
- Perform uniform, fine sampling uniformly each level line;
- Smooth each level line separately

$$\Sigma_t^{\lambda,i} = Curve Shortening Flow (\Sigma_0^{\lambda,i})$$

- Compute the discrete curvatures at each vertex;
- Register at each dual pixel the average of all discrete curvatures computed in and create thus the curvature image.

Image Curvature Microscope

Signed and topological curvatures

Figure: Original image, signed curvatures and topological curvatures

Image Curvature Microscope

Curvature Microscope

Figure: Original image, 2X zoom and 4X zoom of the up-right corner. A zoom is necessary to observe the single curvatures.

Image Curvature Microscope

Curvature Microscope

Figure: Curvature map computed on the original level lines with a quantization step s = 36.

Image Curvature Microscope

Curvature Microscope

Figure: Curvature map computed on shortened level lines at normalized scales l = 1, l = 2, and l = 4.

Image Curvature Microscope

A closer look at Attneave's cat

Figure: Zoom on the Attneave cat, its corresponding level lines and curvatures.

Image Curvature Microscope

A closer look at Attneave's cat

Figure: LLAS evolution, affine smoothed level lines and curvature map after filtering.

Image Curvature Microscope

Graphics and aliasing

Figure: Original image, its corresponding level lines and curvatures.

Image Curvature Microscope

Graphics and aliasing

Figure: LLAS evolution, affine smoothed level lines and curvature map after filtering.

Image Curvature Microscope

Bacteria morphologies

Figure: Original bacteria image and the corresponding curvature map.

Image Curvature Microscope

Digital elevation models

Figure: Digital elevation map and its corresponding level lines.

Image Curvature Microscope

Digital elevation models

Figure: The affine smoothed level lines and their curvature map.

Image Curvature Microscope

Paitings sfumato technique

Figure: Extraction with zoom of *Mona Lisa* photograph, its corresponding level lines and curvatures.

Image Curvature Microscope

Paitings sfumato technique

Figure: LLAS evolution, affine smoothed level lines and curvature map after filtering.

Image Curvature Microscope

Text processing

After looks Grea long

Figure: Original handwriting, corresponding level lines and curvatures.

Image Curvature Microscope

Text processing

after looks after longe

Figure: LLAS evolution, affine smoothed level lines and curvature map after filtering.

Image Curvature Microscope

Fingerprints restoration and discrimination

Figure: Original fingerprint, Level Lines Affine Shortening and its Curvature map.

Image Curvature Microscope

Conclusion

- The first outcome of the Level lines Shortening algorithm is the evolved image, which presents some sort of denoising, simplification, and desaliasing;
- The main outcome is an accurate curvature estimate on all level lines;
- A powerful visualization tool, due to the fact that all level lines are polygons with real coordinates allows to zoom in the image at an arbitrary resolution;
- It runs online at www.ipol.im/pub/algo/cmmm_image_curvature_microscope/.