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Abstract

This note gives information about how to commpute the coefficients of a natural
cubic spline that approximates a given discrete curve.

1 Definition

Let x1 < . . . < xn be n real numbers. Let a, b ∈ R be such that a < x1 and
b > xn. Let f be a function from [a, b] into R. For all i ∈ {1, . . . , n}, we write
f(xi) = yi (see Fig. 1).

The function f is a natural cubic spline with nodes (x1, y1), . . . , (xn, yn) if it
satisfies the following conditions:

• The function f is of class C2.
• The restrictions f/[a, x1] and f/[xn, b] coincide with polynoms of degree less

than or equal to 1.
• For all i ∈ {1, . . . , n − 1}, the restriction f/[xi, xi+1] coincides with a poly-

nom of degree less than or equal to 3.

2 Computation of a spline from control points

Our input is a list of control points: (x1, y1), . . . , (xn, yn). Our goal is to com-
pute the coefficients of the polynoms that constitute a spline f with nodes
(x1, y1), . . . , (xn, yn).

For any i ∈ {1, . . . , n} and any family {ai}i∈N, we set:

zi = f ′′(xi) and ∆ai = ai+1 − ai.
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Fig. 1. A spline with 6 control points.

For all j ∈ {1, . . . , n − 2}, for all x ∈ [xj , xj+1],

f ′′(x) =
xj+1 − x

∆xj
zj +

x − xj

∆xj
zj+1.

Let (Aj, Bj) ∈ R
2 such that, for all x ∈ [xj , xj+1],

f(x) = Aj + Bj(x − xj) +
(xj+1 − x)3

6∆xj
zj +

(x − xj)
3

6∆xj
zj+1.

We have f(xj) = yj and f(xj+1) = yj+1, thus:

Aj = yj −
zj(∆xj)

2

6
and Bj =

∆yj

∆xj
− ∆xj∆zj

6
.

The continuity of f ′′ in x1 and xn implies:

z1 = zn = 0.
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The continuity of f ′ in xj implies that, for all j ∈ {2, . . . , n − 1},

∆xj−1

6
zj−1 + (

∆xj

3
+

∆xj−1

3
)zj +

∆xj

6
zj+1 =

∆yj

∆xj
− ∆yj−1

∆xj−1

.

We obtain a system of linear equations that is represented by a tridiagonal
matrix and can be easily solved.

3 Natural parametrization and discretization of a spline

The natural parametrization of f , taking as origin the first control point x1,
is given by:

x
∫

x1

√

1 + (f ′(t))2dt.

We want to find a subdivision of the spline f by a new set (x′

1, . . . , x
′

m) of m
control points, such that all portions have equal lengths (regular discretiza-
tion).

We set:

L =

xn
∫

x1

√

1 + (f ′(t))2dt,

that is, the total length of the spline. Then, we have, for all k ∈ {1, . . . , m}:
x′

k
∫

x1

√

1 + (f ′(t))2dt =
kL

m
.

For all k ∈ {1, . . . , m}, there exists a unique p in {1, . . . , n − 1} such that

xp
∫

x1

√

1 + (f ′(t))2dt ≤ kL

m
<

xp+1
∫

x1

√

1 + (f ′(t))2dt.

We find x′

k as the unique solution in [xp, xp+1] of the equation:

x′

k
∫

xp

√

1 + (f ′(t))2dt =
kL

m
−

xp
∫

x1

√

1 + (f ′(t))2dt.
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We can compute each x′

k by dichotomy.

For a parametric curve in R
d, represented by d functions f1, . . . , fd, the ex-

pression of the natural parametrization becomes:

x
∫

x1

√

(f ′

1(t))
2 + . . . + (f ′

d(t))
2dt.

Corresponding changes must be done in the computation of a subdivision
described above.

4 Curvature

The curvature at point x is given by:

f ′′(x)

(1 + (f ′(x))2)3/2

for the case of function f from R to R.

It is expressed by:

f ′

1(x)f ′′

2 (x) − f ′

2(x)f ′′

1 (x)

((f ′

1(x))2 + (f ′

2(x))2)3/2

for a parametric curve in R
2, represented by functions f1, f2, and by

√
K12 + K13 + K23

((f ′

1(x))2 + (f ′

2(x))2 + (f ′

3(x))2)3/2
,

where Kij = (f ′

i(x)f ′′

i (x) − f ′

j(x)f ′′

i (x))2, for a parametric curve in R
3, repre-

sented by functions f1, f2, f3.

5 Finding a spline that approximates a discrete curve

Let (P1, . . . , Pm) be a sequence of points of Z
n (pixels or voxels) forming a

discrete curve. Let T be a positive real number (tolerance).

Here, we consider parametric splines. A parametric spline in 2D is composed
by two natural cubic splines f1, f2, the points of the parametric spline are
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the couples (f1(t), f2(t)) for convenient values of parameter t. The 3D case is
similar with three functions f1, f2, f3. Thus, computing a parametric spline in
2D (resp. 3D) amounts to compute two (resp. three) natural cubic splines, as
described in Sec. 2.

Our goal is to find a subset of the points of the discrete curve such that the
parametric spline interpolating these points lies “near” the discrete curve, with
respect to the given tolerance T .

Our algorithm is the following (see Figs. 2 and 3 for illustrations).

Initialization:

Set a list L of control points: L = (A0, B, A1) where A0 = P1, A1 = Pm, and
B is the median point of the discrete curve.

Loop:

Compute the parametric spline from the control points in L.

Between any two successive points in L, compute the maximal distance be-
tween the spline segment and the discrete curve segment. If this distance is
greater than T , insert in L a new control point that is the median point of
this discrete curve segment.

Loop until no new point is added to L during an iteration.
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Fig. 2. Illustration (1) of the algorithm.
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Fig. 3. Illustration (2) of the algorithm.
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