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Abstract. Toric spaces being non-simply connected, it is possible to
find in such spaces some loops which are not homotopic to a point:
we call them toric loops. Some applications, such as the study of the
relationship between the geometrical characteristics of a material and its
physical properties, rely on three-dimensional discrete toric spaces and
require detecting objects having a toric loop.
In this work, we study objects embedded in discrete toric spaces, and
propose a new definition of loops and equivalence of loops. Moreover, we
introduce a characteristic of loops that we call wrapping vector : relying
on this notion, we propose a linear time algorithm which detects whether
an object has a toric loop or not.

1 Introduction

Topology is used in various domains of image processing in order to perform
geometric analysis of objects. In porous material analysis, different topologi-
cal transformations, such as skeletonisation, are used to study the relationships
between the geometrical characteristics of a material and its physical properties.

When simulating a fluid flow through a porous material, the whole material
can be approximated by the tessellation of the space made up by copies of one
of its samples, under the condition that the volume of the sample exceeds the
so-called Representative Elementary Volume (REV) of the material [1]. When
the whole Euclidean space is tiled this way, one can remark that the result of
the fluid flow simulation is itself the tessellation of the local flow obtained inside
any copy of the sample (see Fig. 1-a). When considering the flow obtained inside
the sample, it appears that the flow leaving the sample by one side comes back
by the opposite side (see Fig. 1-b). Thus, it is possible to perform the fluid flow
simulation only on the sample, under the condition that its opposite sides are
joined: with this construction, the sample is embedded inside a toric space [2] [3].
In order to perform geometric analysis of fluid flow through porous materials,
we therefore need topological tools adapted to toric spaces.

Considering the sample inside a toric space leads to new difficulties. In a real
fluid flow, grains of a material (pieces of the material which are not connected
with the borders of the sample) do not have any effect on the final results, as



Fig. 1. Simulating a fluid flow - When simulating a fluid flow, a porous material
(in gray) can be approximated by the tessellation of one of its samples (see a). When
the results of the simulation are obtained (the dotted lines), one can see that the fluid
flow through the mosaic is the tessellation of the fluid flow simulation results obtained
in one sample. For example, one can look at the bold dotted line in a): the flow going
from A1 to B1 is the same than the flow going from A2 to B2. It is therefore possible to
perform the fluid flow simulation through only one sample and, in order to obtain the
same results than in a), connect the opposite sides of the sample (see b): the sample
is embedded inside a toric space.

these grains eventually either evacuate the object with the flow or get blocked
and connect with the rest of the material. Thus, before performing a fluid flow
simulation on a sample, it is necessary to remove its grains (typically, in a finite
subset S of Z

n, a grain is a connected component which does not ‘touch’ the
borders of S). However, characterizing a grain inside a toric space, which does
not have any border, is more difficult than in Z

n. On the contrary of the discrete
space Z

n, n-dimensional discrete toric spaces are not simply connected spaces [3]:
some loops, called toric loops, are not homotopic to a point (this can be easily
seen when considering a 2D torus). In a toric space, a connected component may
be considered as a grain if it contains no toric loop. Indeed, when considering a
sample embedded inside a toric space, and a tessellation of the Euclidean space
made up by copies of this sample, one can remark that the connected components
of the sample which do not contain toric loops produce grains in the tessellation,
while the connected components containing toric loops cannot be considered as
grains in the tiling (see Fig. 2).

In this work, we give a new definition of loops and homotopy class, adapted
to n-dimensional discrete toric spaces. Relying on these notions, we also intro-
duce wrapping vectors, a new characteristic of loops in toric spaces which is the
same for all homotopic loops. Thanks to wrapping vectors, we give a linear time
algorithm which allows us to decide whether an n-dimensional object contains a
toric loop or not.



Fig. 2. Grains in toric spaces - The image in a) contains no grain based on the
‘border criterion’; when the Euclidean space is tessellated with copies of the image,
grains appear (the circled connected component is an example of grain). In b), the
connected component has toric loops (e.g. the dotted line) and when the Euclidean
space is tessellated with copies of the image, no grain appear.

2 Basic Notions

2.1 Discrete Toric Spaces

A n-dimensional torus is classically defined as the direct product of n circles
(see [2]). In the following, we give a discrete definition of toric space, based on
modular arithmetic (see [4]).

Given d a positive integer. We set Zd = {0, ..., d − 1}. We denote by ⊕d the
operation such that for all a, b ∈ Z, (a ⊕d b) is the element of Zd congruent to
(a + b) modulo d. We point out that (Zd,⊕d) forms a cyclic group of order d.

Let n be a positive integer, d = (d1, ..., dn) ∈ N
n, and T

n = Zd1
× ... × Zdn

,
we denote by ⊕d the operation such that for all a = (a1, ..., an) ∈ Z

n and
b = (b1, ..., bn) ∈ Z

n, a ⊕d b = (a1 ⊕d1
b1, ..., an ⊕dn

bn). The group (Tn,⊕d)
is the direct product of the n groups (Zdi

,⊕di
)(1≤i≤n), and is an n-dimensional

discrete toric space [2].
The scalar di is the size of the i-th dimension of T

n, and d is the size (vector)
of T

n. For simplicity, the operation ⊕d will be also denoted by ⊕.

2.2 Neighbourhoods in Toric Spaces

As in Z
n, various adjacency relations may be defined in a toric space.

Definition 1. A vector s = (s1, ..., sn) of Z
n is an m-step (0 < m ≤ n) if, for

all i ∈ [1;n], si ∈ {−1, 0, 1} and
∑n

i=1 |si| ≤ m.
Two points a, b ∈ T

n are m-adjacent if there exists an m-step s such that
a ⊕ s = b.

In 2D, the 1- and 2-adjacency relations respectively correspond to the 4- and
8-neighbourhood adapted to bidimensional toric spaces. In 3D, the 1-, 2- and 3-
adjacency relations can be respectively seen as the 6-, 18- and 26-neighbourhood
adapted to three-dimensional toric spaces.



Based on the m-adjacency relation previously defined, we can introduce the
notion of m-connectedness.

Definition 2. A set of points X of T
n is m-connected if, for all a, b ∈ X, there

exists a sequence (x1, ...,xk) of elements of X such that x1 = a, xk = b and
for all i ∈ [1; k − 1], xi and xi+1 are m-adjacent.

2.3 Loops in Toric Spaces

Classically, in Z
n, an m-loop is defined as a sequence of m-adjacent points such

that the first point and the last point of the sequence are equal [5]. However,
this definition does not suit discrete toric spaces: in small discrete toric spaces,
two different loops can be written as the same sequence of points, as shown in
the following example.

Example 3. Let us consider the bidimensional toric space T
2 = Z3 × Z2, and

the 2-adjacency relation on T
2. Let us also consider x1 = (1, 0) and x2 = (1, 1)

in T
2.

There are two ways of interpreting the sequence of points L = (x1,x2,x1) as
a loop of T

2 : either L is the loop passing by x1 and x2 and doing a ‘u-turn’ to
come back to x1, or L is the loop passing by x1 and x2, and ‘wrapping around’
the toric space in order to reach x1 without any ‘u-turn’, as shown on Fig. 3.

Fig. 3. Loops in toric spaces - In the toric space Z3 × Z2 (see a), the sequence of
points (x1, x2, x1) can be interpreted in two different ways: b) and c).

Thus, when considering discrete toric spaces, loops cannot be considered as
sequences of points since it can lead to such ambiguities. This is why we propose
the following definition.

Definition 4. Given p ∈ T
n, an m-loop (of base point p) is a pair L = (p, V ),

where V = (v1, ...,vk) is a sequence of m-steps such that (p⊕v1 ⊕ ...⊕vk) = p.
We call i-th point of L, with 1 ≤ i ≤ k, the point (p ⊕ v1 ⊕ ... ⊕ vi−1).
The loop (p, ()) is called the trivial loop of base point p.

The ambiguity pinpointed in Ex. 3 is removed with this definition of loops:
let v be the vector (0, 1), the loop passing by x1 and x2 and making a u-turn is
(x1, (v,−v)) (see Fig. 3-b), while the loop wrapping around the toric space is
(x1, (v,v)) (see Fig. 3-c).



3 Loop Homotopy in Toric Spaces

3.1 Homotopic Loops

In this section, we define an equivalence relation between loops, corresponding
to an homotopy, inside a discrete toric space. An equivalence relation between
loops inside Z

2 and Z
3 has been defined in [5], however, it cannot be adapted

to discrete toric spaces (see [6]). Observe that the following definition does not
constrain the loops to lie in a subset of the space, on the contrary of the definition
given in [5].

Definition 5. Let K = (p, U) and L = (p, V ) be two m-loops of base point
p ∈ T

n, with U = (u1, ...,uk) and V = (v1, ...,vl). The two m-loops K and L
are directly homotopic if one of the three following conditions is satisfied:

1. There exists j ∈ [1; l] such that vj = 0 and U = (v1, ...,vj−1,vj+1, ...,vl).
2. There exists j ∈ [1; k] such that uj = 0 and V = (u1, ...,uj−1,uj+1, ...,uk).
3. There exists j ∈ [1; k − 1] such that

– V = (u1, ...,uj−1,vj ,vj+1,uj+2, ...,uk), and
– uj + uj+1 = vj + vj+1, and
– (uj − vj) is an n-step.

Remark 6. The last condition ((uj−vj) is an n-step) is not necessary for proving
the results presented in this paper. However, it is needed when comparing the
loop homotopy and the loop equivalence (see [5]), as done in [6].

Definition 7. Two m-loops K and L of base point p ∈ T
n are homotopic if

there exists a sequence of m-loops (C1, ..., Ck) such that C1 = K, Ck = L and for
all j ∈ [1; k − 1], Cj and Cj+1 are directly homotopic.

Example 8. In the toric space Z4 × Z2, let us consider the point p = (0, 0), the
1-steps v1 = (1, 0) and v2 = (0, 1), and the 1-loops La, Lb, Lc and Ld (see
Fig. 4). The loops La and Lb are homotopic, the loops Lb and Lc are directly
homotopic, and the loops Lc and Ld are also directly homotopic.

On the other hand, it may be seen that the 1-loops depicted on Fig. 3-b and
on Fig. 3-c are not homotopic.

3.2 Fundamental Group

Initially defined in the continuous space by Henri Poincaré in 1895 [7], the funda-
mental group is an essential concept of topology, based on the homotopy relation,
which has been transposed in different discrete frameworks (see e.g. [5], [8], [9]).

Given two m-loops K = (p, (u1, ..., uk)) and L = (p, (v1, ...,vl)) of same base
point p ∈ T

n, the product of K and L is the m-loop K.L = (p, (u1, ...,uk,v1,
...,vl)). We set K−1 = (p, (−uk, ...,−u1)).

The symbol
∏

will be used for the iteration of the product operation on
loops. Given a positive integer w, we set Kw =

∏w
i=1 K and K−w =

∏w
i=1 K

−1.
We also define K0 = (p, ()).



Fig. 4. Homotopic Loops - The 1-loops La,Lb,Lc and Ld are homotopic.

The homotopy of m-loops is an equivalence relation and the equivalence class,
called homotopy class, of an m-loop L is denoted by [L]. The product operation
can be extended to the homotopy classes of m-loops of same base point: the
product of [K] and [L] is [K].[L] = [K.L]. We now define the fundamental group
of T

n.

Definition 9. Given an m-adjacency relation on T
n and a point p ∈ T

n, the m-
fundamental group of T

n with base point p is the group formed by the homotopy
classes of all m-loops of base point p ∈ T

n under the product operation.

The identity element of this group is the homotopy class of the trivial loop.

4 Toric Loops in Subsets of T
n

The toric loops, informally evoked in the introduction, can now be formalised
using the definitions given in the previous sections.

Definition 10. In T
n, we say that an m-loop is a toric m-loop if it does not be-

long to the homotopy class of a trivial loop. A connected subset of T
n is wrapped

in T
n if it contains a toric m-loop.

Remark 11. The notion of grain introduced informally in Sec. 1 may now be
defined: a connected component of T

n is as a grain if it is not wrapped in T
n.

4.1 Algorithm for Detecting Wrapped Subsets of T
n

In order to know whether a connected subset of T
n is wrapped or not, it is not

necessary to build all the m-loops which can be found in the subset: the Wrapped
Subset Descriptor (WSD) algorithm (see Alg. 1) answers this question in linear
time (more precisely, in O(N.M), where N is the number of points of T

n, and
M is the number of distinct m-steps), as stated by the following proposition.



Algorithm 1: WSD(n,m,Tn,d,X)

Data: An n-dimensional toric space T
n of dimension vector d and a non-empty

m-connected subset X of T
n.

Result: A boolean telling whether X has a toric m-loop or not.
Let p ∈ X; Coord(p) = 0n; S = {p };1

foreach x ∈ X do HasCoord(x) = false; HasCoord(p) = true;2

while there exists x ∈ S do3

S = S \ {x};4

foreach non-null n-dimensional m-step v do5

y = x ⊕d v;6

if y ∈ X and HasCoord(y) = true then7

if Coord(y) 6= Coord(x) + v then8

return true;9

else if y ∈ X and HasCoord(y) = false then10

Coord(y) = Coord(x) + v; S = S ∪ {y}; HasCoord(y) = true;11

return false;12

Proposition 12. Let T
n be an n-dimensional toric space of size vector d. A

non-empty m-connected subset X of T
n is wrapped in T

n if and only if WSD(n,m,
T

n,d,X) is true.

Before proving Prop.12 (see Sec. 5.4), new definitions and theorems must
be given: in particular, Th. 25 establishes a very important result on homotopic
loops in toric spaces. Let us study an example of execution of Alg. 1 on an object.

Example 13. Let us consider a subset X of points of Z4 × Z4 (see Fig. 5-a) and
the 2-adjacency relation. In Fig. 5-a, one element p of X is given the coordinates
of the origin (see l. 1 of Alg. 1); then we set x = p. In Fig. 5-b, every neighbour
y of x which is in X is given coordinates depending on its position relative to x

(l. 11) and is added to the set S (l. 11).
Then, in Fig. 5-c, one element of S is chosen as x (l. 3). Every neighbour y

of x is scanned: if y is in X and has already coordinates (l. 7), it is compared
with x: as the coordinates of x and y are compatible in Z

2 (the test achieved
l. 8 returns false), the algorithm continues. Else (l. 10), y is given coordinates
depending on its position relative to x (l. 11) and added to S (see Fig. 5-d).

Finally, in Fig. 5-e, an element of S is chosen as x. The algorithm tests
one of the neighbours y of x (the left neighbour) which has already coordinates
(l. 7). The coordinates of y and x are incompatible in Z

2 (the points (−1, 1) and
(2, 1) are not neighbours in Z

2), the algorithm returns true (l. 9): according to
Prop. 12, the subset X is wrapped in T

n.

To summarize, Alg. 1 ‘tries to embed’ the subset X of T
n in Z

n: if some
incompatible coordinates are detected by the test achieved on l. 8 of Alg. 1, then
the object has a feature (a toric loop) which is incompatible with Z

n. A toric
2-loop lying in X is depicted in Fig. 5-f.



Fig. 5. Example of execution of WSD - see Ex. 13 for a detailed description.

5 Wrapping Vector and Homotopy Classes in T
n

Deciding if two loops L1 and L2 belong to the same homotopy class can be
difficult if one attempts to do this by building a sequence of directly homotopic
loops which ‘link’ L1 and L2. However, this problem may be solved using the
wrapping vector, a characteristic which can be easily computed on each loop.

5.1 Wrapping Vector of a Loop

The wrapping vector of a loop is the sum of all the elements of the m-step
sequence associated to the loop.

Definition 14. Let L = (p, V ) be an m-loop, with V = (v1, ...,vk). Then the

wrapping vector of L is vL =
∑k

i=1 vi.

Remark 15. In Def. 14, the symbol
∑

stands for the iteration of the classical
addition operation on Z

n, not of the operation ⊕ defined in Sec. 2.1.

The notion of ‘basic loops’ will be used in the proof of Prop. 18 and in Def. 22.

Definition 16. Let T
n be an n-dimensional toric space of size vector d =

(d1, ..., dn). We denote, for each i ∈ [1;n], by bi the 1-step whose i-th coordinate
is equal to 1, and by Bi the 1-step sequence composed of exactly di 1-steps bi.

Given p ∈ T
n, for all i ∈ [1;n], we define the i-th basic loop of base point p

as the 1-loop (p, Bi).



Remark 17. For all i ∈ [1;n], the wrapping vector of the i-th basic loop of base
point p is equal to (di.bi).

The next property establishes that the wrapping vector of any m-loop can
only take specific values in Z

n. The proof can be found in Sec. 7.

Proposition 18. Let T
n be an n-dimensional toric space of size vector d =

(d1, ..., dn). A vector w = (w1, ..., wn) of Z
n is the wrapping vector of an m-loop

of T
n if and only if, for all i ∈ [1;n], wi is a multiple of di.

Definition 19. Given T
n of size vector d = (d1, ..., dn), let L be an m-loop

of wrapping vector w = (w1, ..., wn). The normalized wrapping vector of L is
w∗ = (w1/d1, ..., wn/dn).

Example 20. The normalized wrapping vector gives information on how a loop
‘wraps around’ each dimension of a toric space. For example, let T

3 = Z2×Z5×
Z7: a loop with normalized wrapping vector (2,1,0) wraps two times in the first
dimension, one time in the second, and does not wrap in the third dimension.

5.2 Equivalence Between Homotopy Classes and Wrapping Vector

It can be seen that two directly homotopic m-loops have the same wrapping
vector, as their associated m-step sequences have the same sum. Therefore, we
have the following property.

Proposition 21. Two homotopic m-loops of T
n have the same wrapping vector.

The following definition is necessary in order to understand Prop. 24 and its
demonstration, leading to the main theorem of this article.

Definition 22. Let p be an element of T
n, and w∗ = (w∗

1 , ..., w∗
n) ∈ Z

n.
The canonical loop of base point p and normalized wrapping vector w∗ is

the 1-loop
∏n

i=1(p, Bi)
w∗

i , where (p, Bi) is the i-th basic loop of base point p.

Example 23. Consider (T3,⊕), with T
3 = Z3 × Z1 × Z2, w = (3, 1,−4) and

p = (0, 0, 0). The canonical loop of base point p and wrapping vector w is the
1-loop (p, V ) with:

V=
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0
0
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0
0



 ,





1
0
0
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0
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0
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Proposition 24. Any m-loop of base point p ∈ T
n and wrapping vector w ∈ Z

n

is homotopic to the canonical loop of base point p and wrapping vector w.

The proof of the previous proposition can be found in Sec. 7. We can now
state the main theorem of this article, which is a direct consequence of Prop. 21
and Prop. 24.

Theorem 25. Two m-loops of T
n of same base point are homotopic if and only

if their wrapping vectors are equal.

Remark 26. According to Th. 25, the homotopy class of the trivial loop (p, ())
is the set of all m-loops of base point p that have a null wrapping vector.



5.3 Wrapping Vector and Fundamental Group

Given a point p ∈ T
n, we set Ω = {w∗ ∈ Z

n/ there exists an m-loop in T
n of

base point p and of normalized wrapping vector w∗}. From Prop. 18, it is plain
that Ω = Z

n. Therefore, (Ω,+) is precisely (Zn,+)
Theorem 25 states that there exists a bijection between the set of the homo-

topy classes of all m-loops of base point p and Ω. The product (see Sec. 3.2) of
two m-loops K and L of same base point p and of respective wrapping vectors
wk and wl is the loop (K.L) of base point p. The wrapping vector of (K.L) is
(wk + wl), therefore we can state that there exists an isomorphism between the
fundamental group of T

n and (Ω,+). Consequently, we retrieve in our discrete
framework a well-known property of the fundamental group of toric spaces [2].

Proposition 27. The fundamental group of T
n is isomorphic to (Zn,+).

5.4 Proof of Alg. 1

Proof. (of Prop. 12) For all y ∈ X such that y 6= p, there exists a point x such
that the test performed on l. 10 of Alg. 1 is true: we call x the label predecessor
of y.

• If the algorithm returns false, then the test performed l. 8 of Alg. 1 was
never true. Let L = (p, V ) be an m-loop contained in X, with V = (v1, ...,vk),
and let us denote by xi the i-th point of L. As the test performed l. 8 was always
false, we have the following:

{

for all i ∈ [1; k − 1],vi = Coord(xi+1) − Coord(xi)
vk = Coord(x1) − Coord(xk)

The wrapping vector of L is

w =
∑k−1

i=1 (Coord(xi+1) − Coord(xi)) + Coord(x1) − Coord(xk) = 0

Thus, if the algorithm returns false, each m-loop of X has a null wrapping
vector and, according to Th. 25, belongs to the homotopy class of a trivial loop:
there is no toric m-loop in X which is therefore not wrapped in T

n.
• If the algorithm returns true, then, there exists x,y ∈ X and an m-step a,

such that x ⊕ a = y and Coord(y) − Coord(x) 6= a.
It is therefore possible to find two sequences γx and γy of m-adjacent points

in X, with γx = (p = x1,x2, ...,xq = x) and γy = (y = yt, ...,y2,y1 = p),
such that, for all i ∈ [1; q − 1],xi is the label predecessor of xi+1, and for all
i ∈ [1; t − 1],yi is the label predecessor of yi+1. Therefore, we can set















. for all i ∈ [1; q − 1],ui = Coord(xi+1) − Coord(xi)
is an m-step such that xi ⊕ ui = xi+1

. for all i ∈ [1; t − 1],vi = Coord(yi) − Coord(yi+1)
is an m-step such that yi+1 ⊕ vi = yi

Let Nx,y,a = (p, V ) be the m-loop such that V = (u1, ...,uq−1,a,vt−1, ...,
v1). The m-loop Nx,y,a is lying in X and its wrapping vector w is equal to:

w =
∑q−1

i=1 ui + a +
∑t−1

i=1 vi = a − (Coord(y) − Coord(x)) 6= 0



Thus, when the algorithm returns true, it is possible to find, inside X, an
m-loop with a non-null wrapping vector: by Th. 25, there is a toric m-loop in X
which is therefore wrapped in T

n. �

6 Conclusion

In this article, we give a formal definition of loops and homotopy inside discrete
toric spaces in order to define various notions such as loop homotopy and the
fundamental group. We then propose a linear time algorithm for detecting toric
loops in a subset X of T

n: the proof of the algorithm relies on the notions previ-
ously given, such as the wrapping vector which, according to Th. 25, completely
characterizes toric loops.

In Sec. 1, we have seen that detecting toric loops is important in order to
filter grains from a material’s sample and perform a fluid flow simulation on the
sample. The WSD algorithm proposed in this article detects which subsets of a
sample, embedded inside a toric space, will create grains and should be removed.
Future works will include analysis of the relationship between other topological
characteristics of materials and their physical properties.

7 Annex

Proof. (of Prop. 18) First, let L = (p, V ) be an m-loop of wrapping vector w=
(w1, ..., wn), with p = (p1, ..., pn). As L is a loop, for all i ∈ [1;n], pi ⊕di

wi = pi.
Hence, for all i ∈ [1;n], wi ≡ 0(mod di).

Let w = (w1, ..., wn) be a vector of Z
n such that for all i ∈ [1;n], wi is a

multiple of di. If we denote by (p, Bi) the i-th basic loop of base point p, we see
that (

∏n
i=1(p, Bi)

wi/di) is an m-loop whose wrapping vector is equal to w. �

Proof. (of Lem. 24) Let a and b be two non-null 1-steps. Let i (resp. j) be the
index of the non-null coordinate of a (resp b). We say that a is index-smaller
than b if i < j.

Let L = (p, V ) be an m-loop of normalized wrapping vector w∗ ∈ Z
n.

– 1 - The m-loop L is homotopic to a 1-loop L1 = (p, V1) (see Lem. 28).

– 2 - By Def. 5 and 7, the 1-loop L1 is homotopic to a 1-loop L2 = (p, V2),
where V2 contains no null vector.

– 3 - Let L3 = (p, V3) be such that V3 is obtained by iteratively permuting all
pairs of consecutive 1-steps (vj ,vj+1) in V2 such that vj+1 is index-smaller
than vj . Thanks to Lem. 29, L3 is homotopic to L2.

– 4 - Consider L4 = (p, V4), where V4 is obtained by iteratively replacing all
pairs of consecutive 1-steps (vj ,vj+1) in V3 such that vj+1 = (−vj) by
two null vectors, and then removing these two null vectors. The loop L4 is
homotopic to L3.



The 1-loop L4 is homotopic to L, it has therefore the same normalized wrapping
vector w∗ = (w∗

1 , ..., w∗
n) (see Prop. 21). By construction, each pair of consecutive

1-steps (vj ,vj+1) of V4 is such that vj and vj+1 are non-null and either vj =
vj+1 or vj is index-smaller than vj+1.

Let d = (d1, ..., dn) be the size vector of T
n. As the normalized wrapping

vector of L4 is equal to w∗, we deduce that the (d1.|w∗
1 |) first elements of V4 are

equal to (w∗
1/|w∗

1 |.b1) (see Def. 16). Moreover, the (d2.|w
∗
2 |) next elements are

equal to (w∗
2/|w∗

2 |.b2), etc. Therefore, we have L4 = (
∏n

i=1(p, Bi)
w∗

i ). �

Lemma 28. Any m-loop L = (p, V ) is homotopic to a 1-loop.

Proof. Let us write V = (v1, ...,vk) and let j ∈ [1;n] be such that vj is not
a 1-step. The m-loop L is directly homotopic to L1 = (p, V1), with V1 =
(v1, ...,vj−1,vj ,0,vj+1, ...,vk). As vj is not a 1-step, there exists an (m-1)-
step v′

j and a 1-step vj1 such that vj = (vj1 + v′

j). The m-loop L1 is directly
homotopic to L2 = (p, V2), with V2 = (v1, ...,vj−1,vj1,v′

j ,vj+1, ...,vk). By
iteration, it is shown that L is homotopic to a 1-loop. �

Lemma 29. Let LA = (p, VA) and LB = (p, VB) be two m-loops such that
VA = (v1, ...,vj−1,vj1,vj2,vj+1, ...,vk) and VB = (v1, ...,vj−1,vj2,vj1,vj+1

, ...,vk) where vj1 and vj2 are 1-steps. Then, LA and LB are homotopic.

Proof. As vj1 and vj2 are 1-steps, they have at most one non-null coordinate. If
(vj1−vj2) is an n-step, the two loops are directly homotopic. If (vj1−vj2) is not
an n-step, then necessarily vj1 = (−vj2). Therefore, LA is directly homotopic
to LC = (p, VC), with VC = (v1, ...,vj−1,0,0, vj+1, ...,vk). Furthermore, LC is
also directly homotopic to LB . �
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