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Abstract

In this work, we extend a common framework for seeded
image segmentation that includes the graph cuts, ran-
dom walker, and shortest path optimization algorithms.
Viewing an image as a weighted graph, these algorithms
can be expressed by means of a common energy func-
tion with differing choices of a parameter ¢ acting as an
exponent on the differences between neighboring nodes.
Introducing a new parameter p that fixes a power for the
edge weights allows us to also include the optimal span-
ning forest algorithm for watersheds in this same frame-
work. We then propose a new family of segmentation
algorithms that fixes p to produce an optimal spanning
forest but varies the power ¢ beyond the usual water-
shed algorithm, which we term power watersheds.
Placing the watershed algorithm in this energy mini-
mization framework also opens new possibilities for us-
ing unary terms in traditional watershed segmentation
and using watersheds to optimize more general models
of use in application beyond image segmentation.

1. Introduction

Interactive/seeded segmentation algorithms have be-
come quite popular and mature in recent years. The
modern variations on interactive segmentation algo-
rithms are primarily built on top of a small set of core
algorithms — graph cuts, random walker and shortest
paths, which are reviewed shortly. Recently these three
algorithms were all placed into a common framework
that allows them to be seen as instances of a more
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general seeded segmentation algorithm with different
choices of a parameter ¢ [34]. In addition to these algo-
rithms, the ubiquitous seeded watershed segmentation
algorithm [6] shares a similar seeding interface but only
recently was a connection made between the watershed
algorithm and graph cuts [2]. In this paper, we show
how this connection between watersheds and graph cuts
can be used to further generalize the seeded segmenta-
tion framework of [34] such that watersheds, graph cuts,
random walker and shortest paths may all be seen as
special cases of a single general seeded segmentation
algorithm. Our more general formulation has several
consequences which form our contributions.

1. This more general seeded segmentation formulation
exposes a previously unknown family of seeded segmen-
tation algorithms which we term power watersheds. In
this paper, we give an algorithm for solving the energy
minimization problem associated with the power water-
sheds and demonstrate that this new algorithm has the
speed of standard watersheds but outperforms all of the
other algorithms on our benchmark segmentation tests.

2. Placing watersheds in the same framework as graph
cuts, random walker and shortest paths allows us to
easily incorporate unary terms into conventional wa-
tershed segmentation.

3. By placing the watershed algorithm in the same gen-
eralized framework as graph cuts, random walker and
shortest paths, it is possible to take advantage of the
vast literature on improving watershed segmentation to
also improve these other segmentation approaches.

4. By incorporating unary terms, we can push wa-
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tersheds beyond image segmentation into the area of
general energy minimization algorithms which could be
applied to any number of applications for which graph
and MRF models have become standard.

Before proceeding to the exposition of our technique,
we first review the interactive segmentation literature
in more detail.

1.1. Review of supervised segmentation

The algorithms that are reviewed in this section view
the image as a graph with each pixel corresponding to
a node and edges weighted to reflect changes in image
intensity, color or other features.

Watersheds: Intuitively, the watershed of a function
(seen as a topographical surface) is composed of the
locations from which a drop of water could flow to-
wards different minima. The framework allowing the
formalisation and proof of this statement is the optimal
spanning forests relative to the minima [14, 15]. For the
purpose of seeded image segmentation, the gradient of
the image can be considered as a relief map and, in-
stead of minima, seeds may be placed by the user or
found automatically to specify the segmentation of the
image into desired regions. A maximum (minimum)
spanning forest (MSF) algorithm computes trees span-
ning all the nodes of the graph, each tree being con-
nected to exactly one connected seed component, and
the weight of the set of trees being maximum (mini-
mum). An optimal spanning forest can be computed
with an algorithm from [I4] in quasi-linear time. Wa-
tersheds are widely used in image segmentation because
there exist numerous and efficient algorithms that are
easy to implement. However, segmentation results from
watersheds may suffer from leaks and degeneracy of the
solution on the plateaus of the weight function.

Graph Cuts: The labeling produced by the graph cuts
(GC) algorithm is determined by finding the minimum
cut between the foreground and background seeds via
a maximum flow computation. The original work on
GC for interactive image segmentation was produced
by Boykov and Jolly [9], and this work has been sub-
sequently extended by several groups to employ differ-
ent features [7] or user interfaces [31, 27]. Although
GC is relatively new, the use of minimal surfaces in
segmentation has been a common theme in computer
vision for a long time [20, 8, 29] and other boundary-
based user interfaces have been previously employed
[28, 19, 12, 21]. Two concerns in the literature about
the original GC algorithm are metrication error (“block-
iness”) and the shrinking bias. Metrication error was
addressed in subsequent work on GC by including ad-
ditional edges [10], by using continuous max flows [4] or

total variation [36]. These methods for addressing met-
rication error successfully overcome the problem, but
may incur greater memory and computation time costs
than the application of maximum flow on a 4-connected
lattice. The shrinking bias can cause overly small ob-
ject segments because GC minimizes boundary length.
Although some techniques have been proposed for ad-
dressing the shrinking bias [10, 4, 37], these techniques
all require additional parameters or computation.

Random Walker: The random walker (RW) algorithm
of Grady [22] is also formulated on a weighted graph
and determines labels for the unseeded nodes by assign-
ing the pixel to the seed for which it is most likely to
send a random walker. This algorithm may also be in-
terpreted as assigning the unlabeled pixels to the seeds
for which there is a minimum diffusion distance [13], as
a semi-supervised transduction learning algorithm [17]
or as an interactive version of normalized cuts [33, 23].
Additionally, popular image matting algorithms based
on quadratic minimization with the Laplacian matrix
may be interpreted as employing the same approach
for grouping pixels, albeit with different strategies to
determine the edge weighting function [26]. Diffusion
distances avoid segmentation leaking and the shrink-
ing bias, but the segmentation boundary may be more
strongly affected by seed location than with graph cuts
[34].

Shortest Paths (geodesics): The shortest path algo-
rithm assigns each pixel to the foreground label if there
is a shorter path from that pixel to a foreground seed
than to any background seed, where paths are weighted
by image content in the same manner as with the GC
and RW approaches. This approach was recently pop-
ularized by Bai and Sapiro [5], but variants of this idea
have appeared in other sources [16, 3, 18]. The primary
advantage of this algorithm is speed and prevention of
a shrinking bias. However, it exhibits stronger depen-
dence on the seed locations than the RW approach [34],
is more likely to leak through weak boundaries (since
a single good path is sufficient for connectivity) and
exhibits metrication artifacts on a 4-connected lattice.

All of the above models may be considered as address-
ing energies comprised of only unary and pairwise (bi-
nary) energy terms. However, recent literature has
found that the addition of energy terms defined on
higher-order cliques can help improve performance on
a variety of tasks [24, 1]. Although we do not address
higher-order cliques specifically in this work, we note
that all recent progress in this area has been through an
equivalent construction of pairwise terms. Therefore,
our results could also be useful in that context. Despite
the recent popularity of energies defined on higher order
cliques, pairwise terms (and watersheds) are still used



ubiquitously in the computer vision literature and any
improvement to these models can have a broad impact.

2. A seeded image segmentation frame-
work

We begin our exposition by reviewing the unity frame-
work of [34] before showing how to further broaden
this framework to provide a general seeded segmenta-
tion scheme that includes the MSF algorithm for water-
shed as a special case. Examination of the special cases
of this general algorithm reveals a new class of water-
shed segmentation models. We prove several theoretical
properties of this new class of watersheds and then give
an algorithm for minimizing the energy associated with
this generalized watershed model.

2.1. A review of the existing generalized segmenta-
tion algorithm

In this section, we review the segmentation framework
introduced by Sinop and Grady in [34]. A graph con-
sists of a pair G = (V, E) with vertices v € V and edges
e € E CV xV with cardinalities n = |[V| and m = |E|.
An edge, e, spanning two vertices, v; and v; , is de-
noted by e;;. In image processing applications, each
pixel is typically associated with a node and the nodes
are connected locally via a 4 or 8-connected lattice. A
weighted graph assigns a (typically non-negative and
real) value to each edge called a weight. The weight of
an edge e;; is denoted by w(e;;) or w;;. We also denote
wp; and wp; as the unary weights penalizing foreground
and background affinity at node v;. In the context of
segmentation and clustering applications, the weights
encode nodal affinity such that nodes connected by an
edge with high weight are considered to be strongly
connected and edges with a low weight represent nearly
disconnected nodes. One common choice for generating
weights from image intensities is to set

wij = exp(=p(L; — 1)), (1)
where I; is the image intensity at node (pixel) v;.

Given foreground F and background B seeds, the gen-
eralized model for producing segmentation s is given by

[34] as
min Y (wijlr —x;))" +
” ei; €L
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It was shown in [34] that graph cuts gives the solution
to this model when ¢ = 1, random walker gives the
solution to this model when ¢ = 2 and shortest paths
(geodesics) give the solution to this model as ¢ — oo.

2.2. Broadening the framework to watersheds

We now broaden the segmentation algorithm in (2) to
include watersheds simply by separating the exponent
on the weights and the variables. Specifically, we intro-
duce parameter p to define a new segmentation model
as

min 32 whfe: -l

ei; €EE
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When p is a small finite value, then the various values
of ¢ may be interpreted respectively as the graph cuts
(¢ = 1), and random walker (¢ = 2) algorithms. When
q and p converge toward infinity together with the same
speed, then the solution to (3) can be computed by the
shortest path (geodesics) algorithm. Those three algo-
rithms form the underpinning for many of the advanced
image segmentation methods in the literature.

It was shown in [2] that when ¢ = 1 (graph cuts) and
p — oo then the minimum of (3) is given by a max-
imum spanning forest algorithm. Said differently, as
the power of the weights increases to infinity, then the
graph cuts algorithm produces a segmentation corre-
sponding to a maximum spanning forest. Interpreted
from the standpoint of the Gaussian weighting func-
tion in (1), it is clear that we may associate = p to
understand that the watershed equivalence comes from
operating the weighting function in a particular param-
eter range. An important insight from this connection is
that above some value of 3 we can replace the expensive
maz-flow computation with an efficient maximal span-
ning forest computation. By raising p — oo and varying
the power ¢ we obtain a previously unexplored family
of segmentation models which we refer to as power
watersheds. An important advantage of power water-
sheds with varying ¢ is that the main computational
burden of these algorithms depends on an MSF com-
putation, which is extremely efficient [11]. In the next
section we prove that as p — oo there exists a value of p
after which any of the algorithms (regardless of ¢) may
be computed via an MSF. We then give an algorithm to
minimize (3) for any value of ¢ when p — oo. Table 1
gives a reference for the different algorithms generated
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1 Collapse to seeds Graph cuts Watershed
2 f5 norm Voronoi | Random walker Power watershed ¢ = 2
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Table 1. Our generalized scheme for image segmentation includes several popular segmentation algorithms as special cases of
the parameters p and q. The power watersheds are previously unknown in the literature, but may all be optimized efficiently

with a maximal spanning forest calculation.

by various value of p and gq.

2.3. The case ¢ finite, p — oo

We now generalize the link between GC and MSF es-
tablished by Allene et al. [2] by proving that GC, RW,
and generally all g-cuts converge to MSF as p tends to
infinity.

Definitions 1. (g-cut, MSF, MSF cut)

Let M be a subgraph of G, and q be a real value greater
or equal to one in Eq 5. The set of edges e;; such that
the labels i and j relative to M wverify s; # s; is a g-cut
relative to M for [w]P.

A plateau is a subgraph of G consisting of a mazimal set
of nodes connected with edges having the same weight.

Let'Y be a subgraph of G. We say that Y is an exten-
sion of M (over G) if each connected component of Y
contains exactly one connected component of M.

Let F and M be two subgraphs of G. We say that F
is a forest relative to M if (i) F is an extension of M,
(ii) for any extension Y € F of M,V(Y) = V(F) =
Y =F, and (i) V(F)=V.

Let F and M be two subgraphs of G. We say that F is a
maximum spanning forest (MSF) relative to M (for w)
if I is a spanning forest relative to M and if the weight
of F' is maximum, i.e. greater or equal to the weight of
any other spanning forest relative to M.

Let M be a subgraph of G and F be a MSF relative
to M. A MSF cut is the set of edges that links two
different connected components of F.

Theorem 1. If M is a subgraph of G and if each weight
w is unique, then any q-cut relative to M for [w]P when
p — o0 is a MSF cut relative to M for w.

Proof. The proof is based on the construction of a set
of edges that belong to the g-cut relative to M for [w]P
when p — oo. During the construction, we find that the
edges are taken in decreasing order, following Kruskal’s
algorithm for maximum spanning forest construction.

Figure 1. Illustration of progressive convergence to the
power watershed result as p — oo, using ¢ = 2. Top row:
Segmentation results with p = 1, p = 8, p = 25 and the
power watershed. Bottom row: Corresponding potentials
for p=1, p =8, p =25 and the input seeds.

At the end of the construction, the g-cut obtained is
the MSF cut relative to M for w which is unique in the
case of different weights.

At each step, we consider the edge of maximum weight

€max Of E. We normalize all the weights by dividing
them by w,,, .., to obtain all the weights between 0 and
1 with the normalized weight of e,., equal to 1. The
energy to minimize is also

5 () i { S50 @

€m:
ei;€E max

If at least one of the vertices composing e,., has not
been labeled yet, then w,,, can not be a part of the
minimum ¢-cut energy when p tends toward infinity,
because all the other weights converge toward 0 and so
does any finite sum of these weights. Choosing x; =
x; for the edge e;; = e,.. is the only possibility to
eliminate the only term of maximum weight of (4). The
edge e,,., is not included in the g-cut, and also does not
belong to the MSF cut as i and j belong to the same
tree.

If i and j were already labeled, if x; = x;, the edge e,,..
is not included in the ¢-cut, and also does not belong
to the MSF cut as ¢ and j belong to the same tree. If
x; # x4, we have necessary either x; = 0 and x; = 1 or
z; = 1 and x; = 0, because during the different steps



of the labeling, x; and x; are chosen equal to labels
already given, which are 0 or 1. By construction, the
edge e,,.. belongs to the g-cut relative to M for [w]™.
It also belongs to the MSF cut as it would join two

different trees otherwise.

Repeating the steps recursively, we find we have built
a MSF cut relative to M for w in exactly the same
manner as with Kruskal’s algorithm. U

Corollary 1. The labeling solution x of any q-cut rel-
ative to M for [w]P when p — oo and all the weights
are different is binary. In this situation, all studied al-
gorithms converge to the same result.

Property 1. In the case of an arbitrary set of weights
(i.e. some weights can be equal), theorem 1 still holds
when M is the set of all maxima of the image.

Corollary 1 is illustrated on Fig. 1. Property 1 is due
to the fact that we only encounter plateaus in order. A
method for forcing any set of markers to be the only
maxima of an image is to apply a reconstruction [30].
However, the labelling solution z is no longer binary,
and we need a procedure to deal with plateaus, which
we introduce now.

2.3.1 Algorithm for optimizing the case p — oo

The algorithm proposed in this section can be based on
Kruskal’s or Prim’s algorithm for maximum spanning
tree with two main differences — a forest is computed
in place of a tree, and a g-cut optimization is performed
on the plateaus.

In Algorithm 1, if A is a subset of an MSF, an edge ¢
is safe if AU e is also a subset of an MSF. The merge
operation of a set of nodes S consists of removing the
nodes in S from the graph and replacing these nodes
with a single node such that any edge spanning a node
in S to nodes in S now connects the merged node to
the same nodes in S. Additionally, in the above al-
gorithm, the unary terms in (3) are treated as binary
terms connected to phantom seeds vp and vp, i.e.,

Zw%zmz — 09+ Zw%i\xi —17=
V4 v

D whilei —ap|?+ > whilz — st (5)
] Vi

Algorithm 1 is illustrated on an example Fig. 2. The
worst-case complexity of the power watershed algo-
rithm (obtained if all the edges weights are equal) is
given by the cost of optimizing (3) for the given ¢. In
best-case scenario (all weights have unique values), the

Algorithm 1: Optimizing p — oo,q > 1

Data: A weighted graph G(V, E) and a set of
foreground F' and background B seeds
Result: A potential function = and a labeling
s associating a label to each vertex.
Set xr = 1, x = 0 and all other = values as
unknown, mark all edges as unprocessed.
while any node has an unknown potential do
Find an edge (or a plateau) Fyax which is
safe and denote by S the set of nodes
connected by Enax.
if S contains any nodes with known potential
then
Find z¢ minimizing (3) (using the input
value of ¢) on the subset S with the
weights in Ehyiax set to w;; = 1, all other
weights set to w;; = 0 and the known
values of x within S fixed to their known
values. Consider all xg values produced by
this operation as known.
else
Merge all of the nodes in S into a single
node, such that when the value of x for
this merged node becomes known, all
merged nodes are assigned the same value
L of z and considered known.

Set s; =1if x; > % and s; = 0 otherwise.

power watershed algorithm has the same asymptotic
complexity as the algorithm used for MSF computation.
When the maximum spanning forest is computed us-
ing Kruskal’s algorithm, the complexity is quasi-linear.
In practical applications where the plateaus have size
less than some fixed value K, then the complexity of
the power watershed algorithm matches the quasi-linear
complexity of the standard watershed algorithm. In our
experiments in Section 3 with practical image segmen-
tation tasks, the dependence of the computation time
on image size of the power watersheds is very similar to
the dependence in standard watersheds.

Following Property 1, the labeling s produced by the
power watershed algorithm when all maxima are seeds
optimizes (3).

A proof-of-correctness for this section is given in Fig. 1.
The segmentation was performed with progressively
larger values of p, keeping ¢ = 2 and shows that the
segmentation result converges to the result given by the
above algorithm for the power watershed with ¢ = 2.
The value ¢ = 2 was employed for this example since it
is known that ¢ = 2 forces a unique minimum for (3).



©

(a)

Figure 2. Different steps of the power watershed algorithm for ¢ = 2: (a) Initialization: A weighted graph with two seeds, (b)
First step, the edges of maximum weight are added to the forest, (¢) After several steps, the next largest edge set belongs to
a plateau connected to two labeled trees, (d) Minimize (3) on the subset with ¢ = 2 (i.e., utilize the random walker algorithm
on the plateau), (e) Another plateau connected to three labeled vertices is encountered, and (f) Final segmentation obtained

after few more steps.

Figure 3. Example segmentations using the original seeds

and images from the Grabcut database : (a) Seeds, (b)
Graph cuts, (c¢) Random walker, (d) Shortest paths, (e)
Maximum spanning forest (standard watershed), and (f)
Power watershed (¢ = 2).

Error| Graph| Random| Shortest | MSF Power
cuts | walker | paths (Kruskal/ | Wshed
(geodesics) Prim) (g =2)

mean| 0.953 | 0.954 0.955 0.953/0.954| 0.957

stand

0.043 | 0.043 0.042
dev.

0.040/0.040, 0.037

med. | 0.963 | 0.965 0.966 0.963/0.963 0.964

mean| 0.925 | 0.921 0.918 0.922/0.922 0.924

stand

0.061 | 0.064 0.062
dev.

0.063/0.062| 0.064

med. | 0.933 | 0.934 0.932 0.934/0.935 0.937

Table 2. Dice coefficient computed between the segmenta-
tion mask and the ground truth image (provided by Grabcut
database). The lines above the double bar show results for
the set of seeds provided with the database, and the lines
below the double bar show results obtained with the eroded
set of seeds (see Figure 4).

3. Results

We now demonstrate the performance of power water-
sheds with respect to the other seeded image segmen-
tation algorithms. In the introduction we discussed
how many of the leading interactive segmentation algo-
rithms (e.g., Grabcut, lazy snapping, closed-form mat-
ting) have graph cuts, random walker, shortest paths or

watersheds as an underlying component. Consequently,
we will not compare our power watersheds to any of
the complete segmentation systems listed above, but
rather against the comparable (component) algorithms
of graph cuts, random walker, shortest paths and wa-
tersheds. Additionally, to simplify the comparison we
will not employ unary terms in our segmentations.

We may consider any set Eyax in Algorithm 1 that
contains multiple edges as a plateau in the traditional
sense of the watershed algorithm. It is clear in Algo-
rithm 1 that the solution for the power watersheds are
the same for any power ¢ in the absence of plateaus.
Following Property 1, optimality of the power water-
shed is achieved if seeds are the only maxima in the
image. To enforce this condition, we apply a geodesic
reconstruction on the gradients [30] before employing
our power watershed algorithm.

Our experiments consist of testing five algorithms em-
bodying different combinations of p and ¢, consist-
ing of graph cuts, (GC), random walker (RW), short-
est path (SP), watersheds/maximum spanning forest
(MSF), and the power watersheds using the power
q = 2. As before, we chose to employ the power water-
shed with ¢ = 2 due to the uniqueness of the solution
to (3) for this setting. We used the Microsoft ‘Grab-
cut’ database available online [31], which is composed
of fifty images provided with seeds. However, the seeds
provided by the Grabcut database are generally equidis-
tant from the ground truth boundary. To remove any
bias from this seed placement on our comparative re-
sults, we produced an additional set of seeds by signif-
icantly eroding the original foreground seeds. Example
seeds and segmentations for these five algorithms with
the original Grabcut database seeds are shown in Fig-
ure 3 and with the new seeds in Figure 4.

Table 2 displays the performance results for these al-
gorithms. The dice coefficient is a similarity measure
between sets (segmentation and ground truth), rang-



Figure 4. Example segmentations using eroded seeds on the Grabcut database images : (a) Seeds, (b) Graph cuts, (c) Random
walker, (d) Shortest path, (e¢) Maximum spanning forest (standard watershed), and (f) Power watershed (¢ = 2).

ing from 0 to 1 for bad and good match repectively.
When segmenting with the first seeding strategy (the
seeds contained in the Grabcut database), the power
watershed outperforms both GC and MSF (standard
watershed). The RW and the SPF algorithms show
good results for the first set of seeds because these two
algorithms do well when the seeds are placed roughly
equidistant from the desired boundary [34], as they
are in the seeds provided with the Grabcut database.
The experiment on the second set of seeds shows that
the power watershed has the second lowest median er-
ror and mean error behind graph cuts. However, in
the first seeding scenario, graph cuts was one of the
worst performers. In contrast, the power watershed per-
formed very well under both seeding strategies, showing
a strong robustness to both seed quantity and location.

4. Conclusion

In this paper we simplified and extended the recent
work connecting graph cuts and watershed [2]. Extend-
ing the framework of [34], we have proposed a general
framework encompassing graph cuts, random walker,
shortest-path segmentation and watersheds. This con-
nection allowed us to define a new family of optimal
spanning forest for watershed segmentation algorithms
using different exponents, which we termed the “power
watershed”. We produced an algorithm for comput-
ing the power watershed and our experiments showed
that the power watershed with ¢ = 2 retains the speed
of the MSF algorithm while producing improved seg-
mentations. In addition to providing a new image seg-

mentation algorithm, this work also showed how unary
terms could be employed with a standard watershed
algorithm to improve the segmentation performance.

Viewed as energy minimization algorithms, graph cuts,
random walker and shortest paths have found many dif-
ferent applications in the computer vision field that go
beyond image segmentation, such as stereo correspon-
dence, optical flow and image restoration [35, 32, 25].
By placing the optimal spanning forest algorithm for
watersheds in the same energy minimization framework
as these other algorithms, watershed algorithms may
find new uses and applications within the computer vi-
sion field beyond its traditional domain of image seg-
mentation. Due to the relative speed of the optimal
spanning forest algorithms, we believe that it may be an
attractive alternative to current systems in these other
applications of energy minimization.

Future work will develop along several directions. One
direction is the further improvement of image segmen-
tation algorithms using power watersheds as a compo-
nent to larger systems in a similar manner as graph
cuts, random walker and shortest paths have been used.
Additionally, we hope to use the common framework
for these algorithms to leverage existing ideas from the
watershed literature into these other algorithms. A sec-
ond direction for future work will be to characterize the
limits of the watershed algorithm as an energy min-
imization procedure. Ultimately, we hope to employ
power watersheds as a fast, effective alternative to the
energy minimization algorithms that currently pervade
the wide variety of applications in computer vision.
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