
-
206 Chapter 7 ■ Designing classes

Concept:

Code duplica
tion (having the
same segment of
code ,n an appli
catJon more than
once) 1s a s,gn of
bad design. Il
should be avo1ded.

Code 7.1

Selected sections of

the (badly des1gned)

Game class

Code duplication
Code duplication is an indicator of bad design. The Game class shown in Code 7. l contains a
case of code duplication. The problem with code duplication is that any change to one version
must also be made to the other if we are to avoid inconsistency. This increases the amount of
work a maintenance programmer has to do, and it introduces the danger ofbugs. lt happens very
easily that a maintenance programmer finds one copy of the code and, having ·changed it,
assumes that the job is done. There is nothing indicating that a second copy of the code exists,
and it might incorrectly remain unchanged.

public class Game
{

11 ... some code omitted ...

private void createRooms()
{

}

Room outside, theatre, pub, lab, office;

Il create the rooms
outside = new Room(

outside the main entrance of the university ");
theatre = new Room("in a lecture theatre');
pub= new Room(in the campus pub ");
lab = new Room('in a computing lab");
office= new Room(•in the computing admin office);

Il initialise room exits
outside.setExits(null , theatre, lab, pub);
theatre .setExits(null , null , null , outside);
pub.setExits(null , outside, null , null);
lab.setExits(outside, office, null , null);
office.setExits(null , null , null , lab);

currentRoom = outside; Il start game outside

11 ... some code omitted . ..

Code 7.1
continued
Selected sections of

"e (badly des1gned)

ôame class

7.4 Code duplication 207

/ **
* Print out the opening message for the player.
*I

private void printWelcome()
{

}

System.out.println();
System.out.println("Welcome to the World of Zuul! ");
System.out .println(

Zuul is a new, incredibly boring adventure game. ");
System.out.println("Type ' help ' if you need help. ');
System.out.println();
System .out .println(' You are • +

currentRoom.getDescription());
System.out.print(Exits: ") ;
if (currentRoom.northExit != null) {

Syst em.out.print(north ");
}
if (currentRoom.eastExit != null) {

System .out .print("east .) ;
}
if (currentRoom .southExit != null) {

System.out .print(south ") ;
}
if (currentRoom.westExit != null) {

System.out.print(west .) ;
}
System .out.println();

Il ... some code omitted ...

/ **
* Try to go to one direction. If there is an exit, enter
* the new room, otherwise print an error message.
* I

private void goRoom(Command command)
{

if (!command.hasSecondWord()) {

}

Il if there is no second word,
Il we don •t know where to go
System.out.println(' Go where? ");
return ;

208 Chapter 7 ■ Designing classes

Code 7.1
continued
Selected sections of

the (badly designed)

Game class

}

}

Il

String direction= command.getSecondWord();

// Try to leave current room.
Room nextRoom = null ;
if(direction.equals(north)) {

nextRoom = currentRoom.northExit;
}
if (direction.equals('east ")) {

nextRoom = curr entRoom.eastExit;
}
if(direction.equals("south ')) {

nextRoom = currentRoom.southExit;
}
if(direction.equals(' west ")) {

nextRoom = currentRoom.westExit;
}
if (nextRoom == null) {

System.out .println("There is no door!");
}
else {

}

currentRoom = nextRoom;
System.out.println(Vou are • +

currentRoom.getDescription());
System. out. print (·Exits: •) ;
if (currentRoom.northExit != null) {

System.out .print(north);
}
if (currentRoom.eastExit != null) {

System .out.print(east •) j

}
if(currentRoom.southExit != null) {

System.out.print(south .) ;
}
if (currentRoom.westExit != null) {

System .out.print(west .) ;
}
System.out.println();

... some code omitted ...

Code 7 .2
printLocation
Info as a separate
iettiod

7.4 Code duplication 209

Both the p r intWe lcome and goRoom methods contain the following lines of code:

System.out.println("You are • + currentRoom.getDescription());
System.out.print('Exits: ");
if(currentRoom.northExit != null) {

System.out . print('north ");
}
if(currentRoom.eastExit != null) {

System.out.print("east Il } j

}
if(currentRoom.southExit != null) {

System.out.print('south Il) ;

}
if(currentRoom.westExit != null) {

System. out.print("west Il) ;

}
System.out . println();

Code duplication is usually a symptom of bad cohesion. The problem here has its roots in the
fact that both methods in question do two things: printWelcome prints the welcome message
and prints the information about the current location, while goRoom changes the current
location and then prints information about the (new) current location.

Both methods print information about the current location, but neither can cal! the other,
because they also do other things. This is bad design.

A better design would use a separate, more cohesive method whose sole task is to print
the current location information (Code 7.2). Both the printWelcome and goRoom methods can
then make calls to this method when they need to print this information. This way, writing the
code twice is avoided, and when we need to change it, we need to change it only once.

private void printlocation!nfo()
{

System.out.println("You are " +
currentRoom.getDescription());

System.out.print("Exits: ");
if (currentRoom.northExit != null) {

System.out.print("north ");
}
if (currentRoom.eastExit != null) {

System.out.print("east ");
}

210 Chapter 7 ■ Designing classes

Code 7.2
contlnued
printLocation
I nfo as a separate

method

,,
1
: 7.5
1 - -

7.5.1

7.5.2

}

if(currentRoom.southExit != null) {
System.out . print("south);

}
if (currentRoom.westExit != null) {

System.out.print(' west ");
}
System.out.println();

Exerclse 7.5 lmplement and use a separate printlocationinfo method in your
project, as d iscussed in this section. Test your changes.

Making extensions
The zuul-bad project does work. We can execute it, and it correctly does everything that it
was intended to do. However, it is in some respects quite badly designed. A well-designed
alternative would perform in the same way. Just by executing the program we would not
notice any difference.

Once we try to make modifications to the project, however, we will notice significant differences
in the amount of work involved in changing badly designed code, compared with changing a
well-designed application. We will investigate this by making some changes to the project. While
we are doing this, we will discuss examples of bad design when we see them in the existing
source, and we will improve the class design before we implement our extensions.

The task
The first task we will attempt is to add a new direction of movement. Currently, a player can
move in four directions: north, east, south, and west. We want to allow for multilevel buildings
(or cellars, or dungeons, or whatever you later want to add to your game) and add up and down
as possible directions. A player can then type "go down" to move, say, down into a cellar.

Finding the relevant source code
Inspection of the given classes shows us that at least two classes are involved in this change:
Room and Game.

Room is the class that stores (among other things) the exits of each room, and, as we saw in
Code 7 .1 , in the Game class the exit information from the current room is used to print out
information about exits and to move from one room to another.

The Room class is fairly short. lts source code is shown in Code 7.3. Reading the source, we can
see that the exits are mentioned in two different places: they are listed as fields at the top of the
class, and they get assigned in the setExits method. To add two new directions, we would
need to add two new exits (upExit and downExit) in these two places.

denis
Zone de texte

