
Class Game 1/4

/**

 * This class is the main class of the "World of Zuul" application.

 * "World of Zuul" is a very simple, text based adventure game. Users

 * can walk around some scenery. That's all. It should really be extended

 * to make it more interesting!

 *

 * To play this game, create an instance of this class and call the "play"

 * method.

 *

 * This main class creates and initialises all the others: it creates all

 * rooms, creates the parser and starts the game. It also evaluates and

 * executes the commands that the parser returns.

 *

 * @author Michael Kolling and David J. Barnes

 * @version 2006.03.30

 */

public class Game

{

 private Parser parser;

 private Room currentRoom;

 /**

 * Create the game and initialise its internal map.

 */

 public Game()

 {

 createRooms();

 parser = new Parser();

 }

 /**

 * Create all the rooms and link their exits together.

 */

 private void createRooms()

 {

 Room outside, theatre, pub, lab, office;

 // create the rooms

 outside = new Room("outside the main entrance of the university");

 theatre = new Room("in a lecture theatre");

 pub = new Room("in the campus pub");

 lab = new Room("in a computing lab");

 office = new Room("in the computing admin office");

 // initialise room exits

 outside.setExits(null, theatre, lab, pub);

 theatre.setExits(null, null, null, outside);

 pub.setExits(null, outside, null, null);

 lab.setExits(outside, office, null, null);

 office.setExits(null, null, null, lab);

 currentRoom = outside; // start game outside

 }

 /**

 * Main play routine. Loops until end of play.

 */

22 sept. 2008 21:26:46

Class Game (suite) 2/4

 public void play()

 {

 printWelcome();

 // Enter the main command loop. Here we repeatedly read commands and

 // execute them until the game is over.

 boolean finished = false;

 while (! finished) {

 Command command = parser.getCommand();

 finished = processCommand(command);

 }

 System.out.println("Thank you for playing. Good bye.");

 }

 /**

 * Print out the opening message for the player.

 */

 private void printWelcome()

 {

 System.out.println();

 System.out.println("Welcome to the World of Zuul!");

 System.out.println("World of Zuul is a new, incredibly boring adventure gam

e.");

 System.out.println("Type 'help' if you need help.");

 System.out.println();

 System.out.println("You are " + currentRoom.getDescription());

 System.out.print("Exits: ");

 if(currentRoom.northExit != null)

 System.out.print("north ");

 if(currentRoom.eastExit != null)

 System.out.print("east ");

 if(currentRoom.southExit != null)

 System.out.print("south ");

 if(currentRoom.westExit != null)

 System.out.print("west ");

 System.out.println();

 }

 /**

 * Given a command, process (that is: execute) the command.

 * @param command The command to be processed.

 * @return true If the command ends the game, false otherwise.

 */

 private boolean processCommand(Command command)

 {

 boolean wantToQuit = false;

 if(command.isUnknown()) {

 System.out.println("I don't know what you mean...");

 return false;

 }

 String commandWord = command.getCommandWord();

 if (commandWord.equals("help"))

 printHelp();

 else if (commandWord.equals("go"))

 goRoom(command);

22 sept. 2008 21:26:46

Class Game (suite) 3/4

 else if (commandWord.equals("quit"))

 wantToQuit = quit(command);

 return wantToQuit;

 }

 // implementations of user commands:

 /**

 * Print out some help information.

 * Here we print some stupid, cryptic message and a list of the

 * command words.

 */

 private void printHelp()

 {

 System.out.println("You are lost. You are alone. You wander");

 System.out.println("around at the university.");

 System.out.println();

 System.out.println("Your command words are:");

 System.out.println(" go quit help");

 }

 /**

 * Try to go to one direction. If there is an exit, enter

 * the new room, otherwise print an error message.

 */

 private void goRoom(Command command)

 {

 if(!command.hasSecondWord()) {

 // if there is no second word, we don't know where to go...

 System.out.println("Go where?");

 return;

 }

 String direction = command.getSecondWord();

 // Try to leave current room.

 Room nextRoom = null;

 if(direction.equals("north")) {

 nextRoom = currentRoom.northExit;

 }

 if(direction.equals("east")) {

 nextRoom = currentRoom.eastExit;

 }

 if(direction.equals("south")) {

 nextRoom = currentRoom.southExit;

 }

 if(direction.equals("west")) {

 nextRoom = currentRoom.westExit;

 }

 if (nextRoom == null) {

 System.out.println("There is no door!");

 }

 else {

 currentRoom = nextRoom;

 System.out.println("You are " + currentRoom.getDescription());

 System.out.print("Exits: ");

22 sept. 2008 21:26:46

Class Game (suite) 4/4

 if(currentRoom.northExit != null)

 System.out.print("north ");

 if(currentRoom.eastExit != null)

 System.out.print("east ");

 if(currentRoom.southExit != null)

 System.out.print("south ");

 if(currentRoom.westExit != null)

 System.out.print("west ");

 System.out.println();

 }

 }

 /**

 * "Quit" was entered. Check the rest of the command to see

 * whether we really quit the game.

 * @return true, if this command quits the game, false otherwise.

 */

 private boolean quit(Command command)

 {

 if(command.hasSecondWord()) {

 System.out.println("Quit what?");

 return false;

 }

 else {

 return true; // signal that we want to quit

 }

 }

}

22 sept. 2008 21:26:46

Class Room 1/2

/**

 * Class Room - a room in an adventure game.

 *

 * This class is part of the "World of Zuul" application.

 * "World of Zuul" is a very simple, text based adventure game.

 *

 * A "Room" represents one location in the scenery of the game. It is

 * connected to other rooms via exits. The exits are labelled north,

 * east, south, west. For each direction, the room stores a reference

 * to the neighboring room, or null if there is no exit in that direction.

 *

 * @author Michael Kolling and David J. Barnes

 * @version 2006.03.30

 */

public class Room

{

 public String description;

 public Room northExit;

 public Room southExit;

 public Room eastExit;

 public Room westExit;

 /**

 * Create a room described "description". Initially, it has

 * no exits. "description" is something like "a kitchen" or

 * "an open court yard".

 * @param description The room's description.

 */

 public Room(String description)

 {

 this.description = description;

 }

 /**

 * Define the exits of this room. Every direction either leads

 * to another room or is null (no exit there).

 * @param north The north exit.

 * @param east The east east.

 * @param south The south exit.

 * @param west The west exit.

 */

 public void setExits(Room north, Room east, Room south, Room west)

 {

 if(north != null)

 northExit = north;

 if(east != null)

 eastExit = east;

 if(south != null)

 southExit = south;

 if(west != null)

 westExit = west;

 }

 /**

 * @return The description of the room.

 */

 public String getDescription()

 {

22 sept. 2008 21:27:55

Class Room (suite) 2/2

 return description;

 }

}

22 sept. 2008 21:27:55

Class Parser 1/2

import java.util.Scanner;

import java.util.StringTokenizer;

/**

 * This class is part of the "World of Zuul" application.

 * "World of Zuul" is a very simple, text based adventure game.

 *

 * This parser reads user input and tries to interpret it as an "Adventure"

 * command. Every time it is called it reads a line from the terminal and

 * tries to interpret the line as a two word command. It returns the command

 * as an object of class Command.

 *

 * The parser has a set of known command words. It checks user input against

 * the known commands, and if the input is not one of the known commands, it

 * returns a command object that is marked as an unknown command.

 *

 * @author Michael Kolling and David J. Barnes

 * @version 2006.03.30

 */

public class Parser

{

 private CommandWords commands; // holds all valid command words

 private Scanner reader; // source of command input

 /**

 * Create a parser to read from the terminal window.

 */

 public Parser()

 {

 commands = new CommandWords();

 reader = new Scanner(System.in);

 }

 /**

 * @return The next command from the user.

 */

 public Command getCommand()

 {

 String inputLine; // will hold the full input line

 String word1 = null;

 String word2 = null;

 System.out.print("> "); // print prompt

 inputLine = reader.nextLine();

 // Find up to two words on the line.

 Scanner tokenizer = new Scanner(inputLine);

 if(tokenizer.hasNext()) {

 word1 = tokenizer.next(); // get first word

 if(tokenizer.hasNext()) {

 word2 = tokenizer.next(); // get second word

 // note: we just ignore the rest of the input line.

 }

 }

 // Now check whether this word is known. If so, create a command

 // with it. If not, create a "null" command (for unknown command).

22 sept. 2008 21:28:30

Class Parser (suite) 2/2

 if(commands.isCommand(word1)) {

 return new Command(word1, word2);

 }

 else {

 return new Command(null, word2);

 }

 }

}

22 sept. 2008 21:28:30

Class Command 1/2

/**

 * This class is part of the "World of Zuul" application.

 * "World of Zuul" is a very simple, text based adventure game.

 *

 * This class holds information about a command that was issued by the user.

 * A command currently consists of two strings: a command word and a second

 * word (for example, if the command was "take map", then the two strings

 * obviously are "take" and "map").

 *

 * The way this is used is: Commands are already checked for being valid

 * command words. If the user entered an invalid command (a word that is not

 * known) then the command word is <null>.

 *

 * If the command had only one word, then the second word is <null>.

 *

 * @author Michael Kolling and David J. Barnes

 * @version 2006.03.30

 */

public class Command

{

 private String commandWord;

 private String secondWord;

 /**

 * Create a command object. First and second word must be supplied, but

 * either one (or both) can be null.

 * @param firstWord The first word of the command. Null if the command

 * was not recognised.

 * @param secondWord The second word of the command.

 */

 public Command(String firstWord, String secondWord)

 {

 commandWord = firstWord;

 this.secondWord = secondWord;

 }

 /**

 * Return the command word (the first word) of this command. If the

 * command was not understood, the result is null.

 * @return The command word.

 */

 public String getCommandWord()

 {

 return commandWord;

 }

 /**

 * @return The second word of this command. Returns null if there was no

 * second word.

 */

 public String getSecondWord()

 {

 return secondWord;

 }

 /**

 * @return true if this command was not understood.

22 sept. 2008 21:29:31

Class Command (suite) 2/2

 */

 public boolean isUnknown()

 {

 return (commandWord == null);

 }

 /**

 * @return true if the command has a second word.

 */

 public boolean hasSecondWord()

 {

 return (secondWord != null);

 }

}

22 sept. 2008 21:29:31

Class CommandWords 1/1

/**

 * This class is part of the "World of Zuul" application.

 * "World of Zuul" is a very simple, text based adventure game.

 *

 * This class holds an enumeration of all command words known to the game.

 * It is used to recognise commands as they are typed in.

 *

 * @author Michael Kolling and David J. Barnes

 * @version 2006.03.30

 */

public class CommandWords

{

 // a constant array that holds all valid command words

 private static final String[] validCommands = {

 "go", "quit", "help"

 };

 /**

 * Constructor - initialise the command words.

 */

 public CommandWords()

 {

 // nothing to do at the moment...

 }

 /**

 * Check whether a given String is a valid command word.

 * @return true if a given string is a valid command,

 * false if it isn't.

 */

 public boolean isCommand(String aString)

 {

 for(int i = 0; i < validCommands.length; i++) {

 if(validCommands[i].equals(aString))

 return true;

 }

 // if we get here, the string was not found in the commands

 return false;

 }

}

22 sept. 2008 21:29:02

