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Abstract. In this paper, we address the problem of solving linear inverse prob-

lems using the Maximum Entropy on the Mean Method (memm). The observation

equation z = Hx + n links the observations z and the supposed known degra-

dation matrix H to the object x and the noise n which have to be estimated.

Given a reference measure � de�ned jointly on x and n, the memm consists in

selecting the distribution which is closest to � according to the Kullback distance

and whose mean satis�es the observation equation. The memm estimator x̂ is the

mean of the selected distribution. This amounts to selecting x̂ as the minimizer of

a convex cost function de�ned on x and n [1].

Up to now, this method yielded only separable objective functions. We present

here an extension of the method, allowing penalization of linear functions of x (such

as di�erences between pixels for example) in the memm formalism.We also discuss

algorithmic issues: the method amounts to minimizing a convex criterion and thus

admits a dual formulation. We will take advantage of both formulations to reduce

computational e�ort, which hadn't been achieved to this day since the problem

had only been solved in the dual variables. We report two simulation examples, a

deconvolution problem in spectroscopy and a Fourier synthesis example.

Key words: maximum entropy on the mean, maximum entropy, convex cost

functions, duality, Legendre{Fenchel transform.

1. Introduction

We consider here linear inverse problems, whose observation model satis�es z =

Hx+n. We want to estimate the object x and the noise n, knowing the observa-

tions z and the degradation matrixH. MatrixH will typically be a convolution or

a Fourier matrix and vector x a signal or an image. A typical resolution framework
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for this type of ill{posed problems is the minimization of a composite criterion

F (x) = Fx (x) +Fn (z �Hx) ;

yielding x̂ = argminxF (x). This objective function comprises a regularization

term Fx and a term Fn penalizing the residual noise z�Hx. Typical choices [2]

are Fx (x) = �1

P
i

��� xi�1

���p + �2

P
j

���xj+1�xj
�2

���q and Fn (z �Hx) = k z �Hx k2.

Convexity of the cost function is a very important issue. Nonconvex cost func-

tions are cumbersome to minimize and the estimator may not be a continuous

function of the observations, continuity being a desirable property. Nevertheless,

nonconvex cost functions may give better results than convex cost functions, espe-

cially regarding edge restoration. On the other hand, convex cost functions can be

minimized using classical descent algorithms, such as gradient or conjugate gra-

dient. Those functions guarantee continuity of the estimator. They are minimized

at a reasonable computational cost.

Remembering Bayes' rule p (x jz ) / p (z jx ) p (x) linking the a posteriori

distribution p (x jz ) to the likelihood p (z jx ) and the a priori distribution p (x),

x̂ can always be interpreted as a maximuma posteriori (map) estimator, providing

the relations
p (x) / exp (�Fx (x)) ;

p (z jx ) / exp (�Fn (z �Hx))

are satis�ed.

We deal here with an alternative framework, the maximum entropy on the

mean method, which allows to both construct and interpret convex cost functions.

This class of convex cost functions comprises a lot of well known criteria, such

as Shannon and Burg entropies and L2 norm for example [3,1]. The method is

closely linked to statistical mechanics. It was introduced by Navaza [4,5] to solve a

inverse problem in crystallography. It has been further investigated by Dacunha{

Castelle, Gamboa and Gassiat [3,6] from a mathematical point of view. Application

of the method to inverse problems has been studied by Bercher, Le Besnerais and

Demoment [7,1,8].

Given a reference measure � de�ned on the objects to be estimated, this method

consists in selecting the distribution p̂ minimizing the Kullback distance to �

among the distributions whose mean satis�es a given constraint. The mem estima-

tor is the mean of the selected distribution. The constraint is here an observation

equation which will be assumed linear. Dealing with nonlinear problems is possible

in the mem formalism, but the optimization problem may no longer be convex.

We will assume that the constraints are quali�ed for all inverse problems con-

sidered here, which means that there exists a least one solution to any problem.

2. The maximum entropy on the mean method

To give a �rst sketch of the method, we will consider the problem of selecting an

estimator x̂ among two candidates fx1;x2g. We will show that the mem procedure

amounts to selecting a distribution among an exponential family, and that deriving
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the mem estimator from this distribution is equivalent to minimizing a convex cost

function de�ned on the object to be estimated.

Let

K (p; �) =

8<
:

Z
log

dp

d�
dp if p� �;

+1 otherwise;

be the Kullback distance between the distribution p and the reference measure �.

Following the mem principle, we derive:

p̂ = argmin
p2C K (p; �) ;

C = Cx1 [ Cx2 ;

Cxi =
�
p 2M+

1 jEp [u] = xi

	
;

x̂ = Ep̂ [u] ;

where M+
1 is the set of the probability measures.

Let pi = argmin
p2Cxi

K (p; �). We have p̂ = argminp2fp1;p2gK (p; �), since

8p 2 C K (p; �) � min( K (p1; �) ;K (p2; �) ) :

Selecting x̂ in fx1;x2g thus amounts to comparing F (x1)
�
= K (p1; �) to F (x2)

�
=

K (p2; �) :

This can be extended to the choice of an estimator among any family E

(whether convex or not) of candidates.

We still have x̂ = argmin
x2E F (x), where F (x) = minfpjEp [u]2E g K (p; �).

Convexity of F (:) derives straightforwardly from convexity of K (:; �).

In the large deviations theory, F (:) is said to be a level-1 entropy, whereas

K (:; �) is the level-2 entropy (see [9] for developments on the large deviations

theory and [10] for the links of the memm with statistical mechanics).

Let us now focus on distribution p1 de�ned previously, so as to show that p1 as

well as p̂ belong to an exponential family.According to its de�nition, distribution p1
minimizes the Kullback distance among all distributions of mean x1. This convex

constrained minimizationproblem is solved using the Lagrange multipliers method,

which requires to �nd the stationary points of the Lagrangian

L = K (p; �) + �t (x1 �Ep [u]) + �0 (1�Ep [1])

associated to the problem. Vector � and scalar �0 are the Lagrange multipliers as-

sociated to the constraints. The Lagrangian will have to be minimized in variable p.

We have:

L =

Z
dp

d�

�
log

dp

d�
� �t

u � �0

�
d� + �t

x1 + �0:

Moreover, from

8y 2 R+�
; 8� 2 R y (logy � �) � � exp (�� 1) ;

we derive
dp

d�

�
log

dp

d�
� �t

u � �0

�
� � exp

�
�
t
u + �0 � 1

�
:
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Hence

8p 2M+
L � �0 + �

t
x1 �

Z
exp

�
�
t
u+ �0 � 1

�
d�;

with equality if and only if

dp (u)

d� (u)
= exp

�
�
t
u+ �0 � 1

�
:

Let us de�ne

F� (�)
�
= 1� �0 = log

Z
exp

�
�
t
u

�
d� (u) ;

assuring normalization of

dp (u) = exp
�
�
t
u+ �0 � 1

�
d� (u) = exp

�
�
t
u �F� (�)

�
d� (u) : (1)

If we combine expressions of the Lagrangian L and of the exponential family (1),

the Lagrangian reduces to D (�)
�
= �

t
x1�F

� (�). Providing this concave function

can be maximized, we de�ne �̂1 = argmax�D (�). This de�nes the distribution p̂1
which is a stationary point of the Lagrangian L. By the way, we also established

that K (p̂1; �) = F (x1) = D (�̂1) (dual attainment relation).

We derive at last equation F (x) = max� (�
t
x �F� (�)), linking F and F� as

convex-conjugates or Legendre{Fenchel transforms of each other. Developments

on the Legendre{Fenchel transform may be found in [9]. F� is said to be the

log-partition function of �, and F is said to be the Cram�er transform of �. This

uniquely de�nes F if one is given a reference measure �.

It must also be emphasized that the method wasn't exposed this way up to day.

The former presentation (see [10] for example) restricted the application framework

of the method, since it supposed that the observation equation was necessarily

linear. This new presentation allows to deal with nonlinear problems and also

allows to select an object among a discrete set of candidates. Of course, those are

merely extensions enlightened by the presentation. These potentialities already

existed before, but might have been hidden by the presentation.

3. The MEMM applied to linear inverse problems

In this section, we apply the memm reviewed in the previous section to the res-

olution of linear inverse problems. We will detail two equivalent formulations of

the memm. We review additional developments needed to circumvent analytical

di�culties otherwise seriously limiting the method.

We use notations previously established. The unknowns to be estimated are the

object x and the noise n. The reference measure will have to be de�ned on x and

n, and chosen such that (x̂; n̂) may be considered as the mean of a distribution

near � according to the Kullback distance. In particular, the selection procedure

of p̂ implies that p̂ has the same support than �. Since x̂ is the mean of p̂, x̂

belongs to the convex hull of the support of �. We take advantage of this property

to constrain x̂ to belong to a given set. A reasonable choice is a separable reference

measure d� (u;v) = d�x (u) d�n (v).
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3.1. PRIMAL FORMULATION

We de�ne here d� (u;v)
�
= d�x (u) d�n (v) and �

�
= [�t

x
;�

t
n
]
t
, �

x
and u having

the same size as x, �
n
and v having the same size as n. Following the reasoning

exposed in the previous section, the log-partition function F� of the reference

measure � is given by:

F� (�) = log

Z
exp

�
�
t
x
u+ �t

n
v

�
d� (u;v) :

We derive:

F� (�) = log

Z
exp

�
�
t
x
u

�
d�x (u) + log

Z
exp

�
�
t
n
v

�
d�n (v) ;

�
= F�

x
(�
x
) + F�

n
(�
n
) :

Hence we have:

F (x;n) = max
�x ;�n

�
�
t
x
x+ �t

n
n�F�

x
(�
x
)� F�

n
(�
n
)
�
;

= max
�x

�
�
t
x
x �F�

x
(�
x
)
�
+ max

�n

�
�
t
n
n�F�

n
(�
n
)
�
;

�
= Fx (x) + Fn (n) :

This shows that the cost function F de�ned on x and n is separable if the

reference measure is separable. The mem estimator is selected by minimizing F

over all objects satisfying the observation equation, i.e. over all objects satisfying

z = Hx + n. This yields x̂ = argminx Fx (x) + Fn (z �Hx) ; which has the

classical form of a regularized cost function. This is said to be the primal formula-

tion of the mem, and F is called the primal cost function. We will now derive the

dual formulation.

3.2. DUAL FORMULATION

To the minimization of a convex function (primal formulation) can be associated

the maximization of a concave function (dual formulation). Both formulations

yield the same solution. This relies on the Legendre{Fenchel duality theory [9].

We have:

Fx (x̂) +Fn (n̂) = max
�x;�n

�
�
t
x
x̂+ �t

n
n̂� F�

x
(�
x
)� F�

n
(�
n
)
�
:

From x̂ = argminx Fx (x) +Fn (z �Hx), we derive:

@Fx (x)

@x

����
x=x̂

�Ht @Fn (n)

@n

����
n=z�Hx̂

= 0:

Hence �̂
x
�Ht

�̂
n
= 0 since, as a result of Fenchel duality,

�̂
x
=

@Fx (x)

@x

����
x=x̂

and �̂
n
=

@Fn (n)

@n

����
n=n̂

:
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We have at last:

Fx (x̂) + Fn (n̂) = max
�n

�
�
t
n
z � F�

x

�
H

t
�
n

�
�F�

n
(�
n
)
�
:

The primal formulation of the problem is thus linked to a dual formulation, which

consists in maximizing the dual criterion D (�
n
)
�
= �

t
n
z�F�

x

�
H

t
�
n

�
�F�

n
(�
n
) :

This amounts to selecting the parameters
�
�̂
x
=H

t
�̂
n
; �̂
n

�
of the maximum

entropy distribution belonging to the exponential family

dp (u;v) = exp
�
�
t
x
u + �t

n
v �F�

x
(�
x
)� F�

n
(�
n
)
�
d�x (u) d�n (v) :

From �̂
n
, we derive x̂ and n̂ using the so-called primal-dual relations:

x̂ =
@F�

x
(�
x
)

@�
x

����
�x=�̂x=H

t
�̂n

and n̂ =
@F�

n
(�
n
)

@�
n

����
�n=�̂n

:

Remember also that (x̂; n̂) is the mean of the maximum entropy distribution. By

the way, we can notice that 8x;n;�
n

F (x;n) � D (�
n
) and also that F (x̂; n̂) =

D (�̂
n
) (dual attainment relation).

3.3. FURTHER DEVELOPMENTS

Both formulations of the method require analytical expression of the log-partition

function F�
x
. It can't generally be computed if �x isn't separable (well known

exceptions to this rule are non separable Gaussian and exponential reference mea-

sures).

In the sequel, reasoning will thus be restricted to separable reference measures.

In a previously exposed computation, we proved that separable reference measures

yield separable primal cost functions. We introduce an additional vector w of

reference measure �w so as to penalize interactions between pixels. If we choose

all measures to be separable, this yields a complete separable primal cost function

F (x;w;n) = Fx (x) +Fw (w) + Fn (n) :

This cost function will be minimized subject to z = Hx + n and w = Qx, Q

being typically a di�erentiation matrix. We thus have:

x̂ = argmin
x

X
i

Fxi (xi) +
X
j

Fwj

�
(Qx)j

�
+
X
k

Fnk
((z �Hx)k) :

A straightforward computation similar to the one already detailed shows that the

dual formulation of this problems writes:

8><
>:

D (�
w
;�
n
) = �

t
n
z � F�

x

�
H

t
�
n
�Qt

�
w

�
�F�

w
(�
w
) �F�

n
(�
n
) ;

(�̂
w
; �̂
n
) = arg max

�w ;�n
D (�

w
;�
n
) ;

�̂
x

= H
t
�̂
n
�Qt

�̂
w
:



THE MAXIMUM ENTROPY ON THE MEAN METHOD 7

The mem estimator is derived using

x̂ =
@F�

x
(�
x
)

@�
x

����
�x=�̂x

; ŵ =
@F�

w
(�
w
)

@�
w

����
�w=�̂w

; n̂ =
@F�

n
(�
n
)

@�
n

����
�n=�̂n

:

Selecting the dual variables (�̂
x
; �̂
w
; �̂

n
) amounts to selecting the maximum en-

tropy distribution in the exponential family

dp (u; s;v) = exp (�t
x
u + �t

w
s+ �t

n
v �F�

x
(�
x
)�F�

w
(�
w
) �F�

n
(�
n
))

d�x (u) d�w (s) d�n (v) :

We chose the reference measure d� (u; s;w) = d�x (u) d�w (s) d�n (v) to be

separable. This isn't a contradiction since the constraint w = Qx applies to the

mean of random variables and not to the realizations of the random variables. This

constraint indeed links the parameters of the maximum entropy distribution by

the relation �̂
x
=H

t
�̂
n
�Qt

�̂
w
:

In a Bayesian framework, it appears that minimizing Fx (x) + Fw (Qx) +

Fn (z �Hx) is equivalent to a map estimation scheme with prior distribution

p (x) / exp (�Fx (x) �Fw (Qx)) and likelihood p (z jx ) / exp (�Fn (z �Hx)).

The class of mem estimators derived here is thus equivalent to the class ofmap esti-

mators obtained with a given set of convex Markov random �elds priors. Any mem

estimator is a map estimator and a map estimator is a mem estimator providing

there exists reference measures �x; �w; �n verifying:

p (x) / exp (�C (�x;x)� C(�w;w)) ;

p (z jx ) / exp (�C (�n;n)) ;

where C (p;y) is the Cram�er transform of the distribution p, the Cram�er transform

being applied to y.

4. Simulations

We report two simulation examples. We �rst deal with a deconvolution example

in spectroscopy and then with a Fourier synthesis example.

Three hyperparameters ka; kb; kc are introduced, the cost function to be min-

imized being F (x;w;n) = kaFx (x) + kbFw (w) + kcFn (n) ; subject to z =

Hx + n and w = Qx. The corresponding dual function to be maximized is

F� (�
x
;�
w
;�

n
) = kc�

t
n
z � kaF

�
x
(�
x
) � kbF

�
w
(�
w
) � kcF

�
n
(�
n
) subject to

�
x
=
�
kcH

t
�
n
� kbQ

t
�
w

�
=ka. The hyperparameters are chosen empirically.

We tried several optimization schemes out (primal and dual objective func-

tions optimized with pseudo{conjugate gradient descent method and pixel by pixel

(Gauss{Seidel) descent method). It seems hard to derive a de�nite general rule

from the simulations we carried out. In any case, it must be checked if optimiza-

tion has been properly completed. In the primal domain, one will thus have to

check if

F (x̂; ŵ; n̂) = F�

�
@Fx (x)

@x

����
x=x̂

;
@Fw (w)

@w

����
w=ŵ

;
@Fn (n)

@n

����
n=n̂

�
:
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A similar relation has to be checked in the dual domain.

Moreover, one should be careful not to stop iterations before the optimum is

reached when operating in the dual variables. This would yield unsatisfactory re-

sults, much more unsatisfactory than when stopping iterations before the optimum

is reached in the primal variables.

Simulations we carried out speak in favor of pixel by pixel minimization.On the

one hand, given a pixel to be updated, every function evaluation is achieved at a

very low computational cost (instead of computingHx orHt
�
n
, we use updating

formulas). Gradient or pseudo{conjugate gradient descent requires computation of

Hx or Ht
�
n
for any function evaluation. On the other hand, separation of the

variables in the pixel by pixel scheme allows more e�cient optimization of the

function (�gure 2c).

4.1. DECONVOLUTION

We used a mixture of two Gamma laws as a reference measure for the pixels and

a Gaussian law as a reference measure for the noise.
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Fig. 1a: original signal Fig. 1b: observations; SNR : 16 dB
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Fig. 1c: mem restauration Fig. 1d: convolution kernel
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Fig. 1e: Lp restauration (p=1.1) Fig. 1f: priors

Figure 1f (priors) depicts exp (�xp) (dotted line) and exp (�F (x)) (dashdot-

ted line). Those functions would play the role of a prior distribution in a Bayesian
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framework.

4.2. FOURIER SYNTHESIS

This example is taken from [11]. The data are the real parts of the twenty �rst

Fourier coe�cients which are supposed to be perfectly known. We used a mixture

of two exponential laws (de�ned on R+) as a reference measure for the pixels, a

mixture of two symmetric exponential laws as a reference measure for the di�erence

between neighboring pixels and a Gaussian law as a reference measure for the noise.
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Fig. 2a: original signal Fig. 2b: mem reconstruction

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

Fig. 2c: criteria vs cpu time (seconds) Fig. 2d: reconstruction; seperable criterion

Figure 2c depicts the value of the objective functions (above: primal domain;

below: dual domain; solid lines: pseudo{conjugate gradient descent; dashdotted

lines: pixel by pixel descent). Figure 2d depicts reconstruction obtained without

penalizing di�erences between pixels, which would be comparable to the results

reported in [11].

5. Conclusion

This communication deals with both theoretical and algorithmic issues. On the

one hand, we account for penalization of interactions between pixels in the mem

formalism. This introduces additional terms in the criterion, which nevertheless

remains strictly convex. On the other hand, we focus on implementation issues.

This speaks in favor of pixel by pixel minimization (Gauss{Seidel strategy), either

in the primal or in the dual domain. It appears in the case investigated here that

minimization in the primal domain is less expensive than in the dual domain.

This doesn't hold as a general and de�nite conclusion. It merely shows that many

strategies are available and that the choice of the suitable one is certainly problem

dependant.
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Additional work on the method is under way. Other approaches for penalizing

interactions in the memm have been proposed: Urban [12] decomposes the error

ni as ni = n
0
i +

P
j nij, where nij = nji and uses a separable reference measure

on
�
n
0
i ; nij

	
. Moreover, study of mathematical aspects of the method by Csisz�ar,

Gamboa and Gassiat is in progress.

The mem provides a framework for constructing convex criteria. This frame-

work also allows to interpret well known criteria. But, in the opinion of the authors,

this framework is by no mean exclusive. In particular, [2] suggests many interesting

convex and nonconvex criteria in a Bayesian approach.
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