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Abstract—Polar architecture is a regarded solution for the
design of efficient transmitters for radiocommunication systems.
However, this architecture is sensitive to delay mismatches
between the envelope and the phase paths. In this paper, we
propose to address this problem by baseband digital signal
processing. We present several adaptive algorithms based on
the minimization of the mean square error between the ideal
signal and the signal generated by the transmitter. Since the
system gain and phase offset of the system are not precisely
known, we also consider the problem of the identification of
these quantities in the feedback loop. We propose solutions
for the direct correction of the unknown delays, which also
account for the gain variation and phase offset. A model of
a polar architecture is tuned on Agilent Advanced Design
System and used to evaluate the algorithms. Results assess both
the need of a calibration procedure and the relevance of the
proposed solutions. We draw attention to the improvement of
the transmitter performances using these algorithms and point
out the potential of digital signal processing in transmitter design.

Index Terms—Polar transmitters, EER architecture, time align-
ment, delays, calibration, baseband signal processing, least mean
square methods

I. I NTRODUCTION

Since new applications and upcoming standards require in-
creasing data rates and lower power consumption, the study
and development of new architectures of communication trans-
mitters for user units is very active. In particular, architectures
relying on the polar representation of signals, called polar
transmitters, are highly regarded. Indeed, the polar architecture
is a solution to achieve a very efficient and linear transmitter
[1]. Further, it is flexible enough to enable the development of
multiband [2] and multimode solutions [3], [4] for Software-
Defined Radio (SDR). This architecture is based on Kahn’s
Envelope Elimination and Restoration (EER) procedure [5].
It has been improved so that actual solution tends toward a
quasi fully digital transmitter [6]. The phase-modulated signal
is translated to RF frequency using either a classical I/Q
modulator or through a modulated phase locked loop. The
envelope is restored at the output of the transmitter by varying
the supply of the power amplifier (PA) through a switching
power supply.
The drawback of this architecture is its sensitivity to the
difference of propagation and processing delays between am-
plitude and phase signals paths. The mismatch between the
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Fig. 1. Polar transmitter. Instead of the classical I-Q decomposition,
the polar transmitter rely on the polar decomposition of signals. Here a
CORDIC processor (Coordinate Rotation Digital Computer) is used. The
phase-modulated signal is translated to RF frequency usinga modulated phase
locked loop, either digital or analog. The envelope is restored at the output of
the transmitter while varying the supply of the power amplifier (PA) through
a switching power supply. A drawback of the architecture is its sensitivity to
the differential processing delay between the two paths.

two paths entails spectral regrowths [7], [8] and an increase
of the Error Vector Magnitude (EVM) [9]. Fulfillment of
the strict requirements on transceivers for modern modulation
schemes warrants a high precision timing alignment between
the envelope and phase path [10]. This becomes more and
more critical and challenging as the data rate increases [10],
[11], [12].
This mismatch is due to pipeline differences in the paths
and to the delay in the anti-alias filter (amplitude path), as
well as small contributions from other analog delays [13].
The asymmetry of processing, the independence of underlying
clocks and the analog interfaces also imply delay mismatches
in the recent fully digital solutions, which also require a
precise delay alignment of amplitude and phase paths [14].
In a production environment, even with the global knowledge
of various delays in the transmitter path, these delays haveto
be tuned on a case-by-case basis to include process spreading
on elements. Overall, this mismatch becomes more and more
limiting as data rate increases. Furthermore, current devices
experience severe variations of temperature, modifications of
the supply voltage, output frequency and power [15] that
impact the system behavior and can also imply further time-
varying desynchronizations that, according to their amount,
would need a tracking procedure.
A linear interpolation was suggested in [16] so as to com-
pensate for the mismatch, while a group delay equalizer
was proposed in [17]. In these two cases, it still remains to
identify the delay mismatch and track its possible variations.
An adaptive hardware realization was proposed in [18], but
with a precision limited by the underlying clock. A calibration
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procedure, based on a feedback loop and the maximization of
the input-output covariance function, is described in [19].
We elaborate here on the principle of an adaptive delay
correction presented in [20], [21]. We propose solutions that
cover the correction and tracking of the unknown delays, with
high accuracy and low complexity. We also show that the
solutions are robust to further mismatches, such as uncertainty
in the knowledge of gain and phase shift of the transmitter. We
still propose a solution for the identification of this complex
gain in order to lower the residual noise and improve the
performances. The effectiveness of the solution is illustrated
on the case of the 3GPP standard for UE transmitters.
The paper is organized as follows. In sectionII , we present
the model of the architecture considered, we illustrate theneed
of envelope and phase alignment, and discuss its feasibility in
polar based transmitter architectures. We also analyze themain
characteristics of the mean square error between the input and
output of the system. In sectionIII , we consider the problem of
the delays correction, based on the minimization of the input-
output means square error. We propose and argue a correction
algorithm, implemented using a stochastic gradient. In order to
reduce its complexity, we also describe a suboptimal version
of this correction algorithm. The performances of these two
solutions are assessed by simulations. In sectionIV, we
consider the behavior of these solutions subject to uncertainties
in the knowledge of system gain and phase offset. In order to
preserve good performances, we introduce an identification
of these unknowns in the feedback loop. The efficiency of
the whole solution, in terms of convergence speed, error
vector magnitude and spectral regrowths, is then demonstrated
through simulation results. We finally conclude in sectionV.

II. ENVELOPE AND PHASE ALIGNMENT

In this section, we first indicate that envelope and phase align-
ment is an essential issue in the design of polar transmitters for
modern systems. We discuss the feasibility of the alignment
of the envelope and phase components.Then, we examine the
behavior of the mean square error between the original signal
and the signal at the output of the transmitter, and consider
the minimization of this mean square error as a possible basis
for the compensation of the delay mismatches.

A. Simulation model of the transmitter – Impact of delay
mismatches on a 16QAM modulation

In this paper, we will illustrate the issues and the performances
of proposed algorithms on a 16QAM modulation with a data
rate of 3.84 Mcps. This corresponds to the 3GPP standard [22].
Transmitter characteristics are given in term of EVM (Error
Vector Magnitude), spectrum transmitter mask and ACLR.
We will mainly focused the performances observations on
EVM and output spectrum. The output spectrum is specified
relative to the root-raised cosine filtered mean power of the
UE carrier taken at different frequency offsets from the carrier.
Specifications are as follows:

• at 2.5 MHz, -35 dBc in 30 kHz bandwidth,
• at 3.5 MHz, -50 dBc in 30 kHz bandwidth,
• at 4 MHz, -35.5 dBc in 1 MHz bandwidth,

Delay EVM ( %) Relative Spectrum @3.5 MHz
Ts/2 77% −33 dBc
Ts/10 12.4% −48 dBc
Ts/20 6.5% −55 dBc
Ts/50 3.6% −61 dBc

TABLE I
IMPACTS OF DELAY MISMATCHES ON THEEVM AND ON THE SPECTRUM.

• for F>8 MHz, -49 dBc in 1 MHz bandwidth.
The EVM has to remain lower than 17.5%.
The transmitter model, see Fig.2, is elaborated with Agilent
Advanced Design System (ADS). The complex modulated
signal is generated with a 16QAM modulator, followed by
a 0.22 roll-off root-raised cosine filter. A complex to polar
conversion is then realized, with a quantization on 10 bits
at a sample frequency ofTs/12. Conversions to the analog
domain are realized using oversampling DACs followed by
baseband filters. The processing delays, as well as delays
introduced by filters and other analog elements, are modeled
as two delays∆1 and ∆2 in the envelope and phase paths
respectively. As we will describe in the following sections,
the correction algorithms involve the comparison between the
ideal signal and the transmitted one. Hence, a return path
has to be implemented, using either an I/Q demodulator or
a simple frequency translation (depending on the algorithm)
and an analog to digital conversion. The signal is quantified
on 10 bits and the converter uses the same clock as in the
transmit path, that is to say with a sampling rate ofTs/12.
Finally, we introduce a complex gain to account for the gain
and phase rotation of the modulated signal after the power
amplifier. In this work we do not elaborate further on the
model of the power amplifier and only take into account a
gain and phase rotation. Potential nonlinear effects, especially,
are not considered here where we concentrate on the issues
related to time mismatches. The calibration and correctionof
nonlinearities, which usually involves a feedback loop, iswell
documented, but still an open issue [23].
With this model, without gain, phase rotation or time mis-
matches, the output EVM is on the order of0.3%, due to the
quantification on 10 bits. Spectral regrowth at3.5MHz from
the carrier is at−70dBc.
In order to examine the sensitivity of polar architecture to
delay mismatches between phase and envelope paths, we
introduced into the simulation model delay mismatches from
Ts/2 to Ts/50. Impacts of these mismatches on the EVM
value and the output spectrum are presented TableI.
According to specifications such as 3G specification concern-
ing the EVM and spectrum specifications, a maximum accept-
able delay shall be on the order ofTs/50, with Ts = 0.26 µs
the symbol period, that is to say lower than5 ns. These results
demonstrate that a synchronization algorithm is mandatory.

B. Feasibility of the time alignment

Let

X(t) = ρ(t) exp(jφ(t)) = ρ(t) cos(φ(t)) + jρ(t) sin(φ(t))

be the complex envelope of the signal at the output of the
digital modulator, whereρ(t) andφ(t) are the envelope and
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Fig. 2. Simulation model of the transmitter. This model includes an I/Q modulator followed by an I/Q to polar converter. The envelope signal is converted
into analog using a 10 bits DAC. In the envelope path, the impact of the DC-DC converter is modeled as a delay∆1. The phase signal is translated to RF
with an RF I/Q modulator after being converted with 10 bits DACs. The processing delay is introduced as a delay∆2 before the restoration of the complete
modulated signal. A complex gain in the return path accountsfor gain and phase shifts that affect the emitted signal.

phase signals, as shown in the model Fig.2.
The baseband signalX(t) is processed by the RF transmitter
(shaping, RF translation, amplification) which results in the
signal at the antenna, whose baseband complex envelope is
denotedZ(t). This signal is affected by the delays introduced
by the RF processing. The envelope and phase components
are delayed respectively by∆1 and∆2. The signalZ(t) then
becomes

Z(t) = ρ(t− ∆1) exp (jφ(t− ∆2)) .

For complex modulation schemes,X(t) can often be modelled
as a complex Gaussian process. In the case of a complex
circular Gaussian process it is well known that envelopeρ(t)
and phaseφ(t) are independent and respectively distributed
according to Rayleigh and uniform distributions.
The case of delayed envelope and phase is less known. In
fact, it appears thatρ(t − ∆1) and φ(t − ∆2) are also
Rayleigh and uniform independent variables, with no reference
to the correlation structure of the underlying original Gaussian
signal X(t), for any delays∆1, ∆2, see [9]. This result
indicates that for Gaussian processes, envelope and phase
arealways independent whatever the delay between envelope
and phase components. This shows that the statistics of the
output at a single instant do not convey any information
on the time alignment or mismatch between envelope and
phase components. Hence, any solution must involve statistical
quantities computed from several instants. A simple example
is the correlation function, or equivalently the power spectrum.
If z(t) = Re{Z(t)}, denotes the real part of the output, its
correlation function is

Rzz(τ) = E {ρ(t− ∆1) cos(φ(t− ∆2))

×ρ(t− τ − ∆1) cos(φ(t− τ − ∆2))}
(1)

where E [•] denotes the statistical expectation operator. The
point that we must emphasize here is that we do not have
a closed-form expression forRzz(τ), unfortunately, and it
even does not seem possible to obtain a workable series
representation. Series expansion exist for the correlation of
the cos(φ) term, or for the correlation of the envelope [24].
Consequently it is difficult to quantify the dependence of the
correlation function on the delay mismatch and imagine a
procedure relying only on this correlation function. However,
introducing a delayµ in the envelope path (for instance),

denoting∆ = ∆2−∆1 and using the stationarity of the signal,
we obtain

Rzz(τ, µ) = E {ρ(t− µ) cos(φ(t − ∆))

×ρ(t− µ− τ) cos(φ(t − ∆ − τ))} .
(2)

Then we can observe that this new correlation function is
exactly equal to the correlation function of the original aligned
signalRxx(τ) whenµ = ∆. Therefore, a possible procedure
can be to look (numerically) forµ that minimizes some
distance betweenRzz(τ, µ) andRxx(τ), for any τ , e.g.

∫

(Rzz(τ, µ) −Rxx(τ))
2
dτ, (3)

or equivalently in the frequency domain:
∫

(Szz(f, µ) − Sxx(τ))
2
df. (4)

From these two procedures, we can yet observe that (i) we
need a feedback from the output, that is a way of acquiring and
computing some quantity related to the output of the system,
and (ii) we need to compare it to some known or estimated
characteristic of the input signal. This means that we shall
implement a feedback loop, relying on the demodulation and
digitization of an image of the emitted signal taken with a
coupler. It shall be observed that a feedback loop is often
already present for calibration or tracking purposes (namely
for the power amplifier calibration and control).
But the two suggestions above are actually difficult to imple-
ment because they require the evaluation of (integrals or sums
of) correlation functions, or spectra, which is computationally
expensive and statistically delicate; the control algorithm can
not be derived precisely, nor characterized, because of thelack
of closed form expression of the correlation. Let us finally
observe that it is, in principle, possible to evaluate only some
portion of the output spectrum and tune the relative delay so
as to minimize the spectral regrowths. The drawback of such
a solution is the definition of the minimization procedure, the
existence of local minima, the fact that outband levels can be
extremely low with high variance.
Since we see that a feedback loop is almost unavoidable,
our proposal is to consider the direct error between the
input and output signals and examine the possibility to derive
compensation procedures of the delay mismatches based on
this error.
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C. The mean square error between the original and generated
signals

As above-mentioned, we noteX(t) the complex envelope of
the signal at the output of the digital modulator andZ(t) the
baseband complex envelope of the signal at the antenna. Let
us define by

J(∆1,∆2) = E
[

|e(t)|2
]

= E
[

|x(t) − z(t)|2
]

(5)

the mean square error between these two signals, withx(t) =
Re{X(t)} andz(t) = Re{Z(t)}.
Taking into account the independence betweenρ(t1) and
φ(t2), for any instantst1, t2, it reduces to

J(∆1,∆2) = 4R(0, 0)− 4R(∆1,∆2) (6)

where

R(∆1,∆2) = E [ρ(t) cos(φ(t))ρ(t − ∆1) cos(φ(t − ∆2))]
(7)

is a kind of ‘correlation function’. As already indicated, we do
not have a closed form expression forR(∆1,∆2). Therefore,
we must rely on numerical simulations or approximations
to quantify the behavior of the algorithms presented in the
following sections.
We can still note here thatR(0, 0) reduces toR(0, 0) =
E

[

ρ(t)2
]

E
[

cos(φ(t))2
]

, and thatR(τ, τ) obtained withτ =
∆1 = ∆2 is nothing else but the correlation functionRxx(τ).
Since we know that the correlation function is a function of
the shaping filter, it follows that the behavior of the error
J(∆1,∆2) is closely related to the shaping filter. We shall
also note thatJ(∆1,∆2) =

∫

See(f)df , whereSee(f) is the
power spectrum of the errore(t). Hence, the mean square
error J(∆1,∆2) also represents the power spectrum of the
error induced by the mismatches∆1 and ∆2, including the
spectral regrowths.
The error functionJ(∆1,∆2) was evaluated numerically in
the case of a 16QAM modulation with a square-root Nyquist
filter (root-raised cosine with 0.22 roll-off) and a sampling
rate of 16 samples per symbol. It is presented in Fig.3
for delays lower than 3 symbol periods. We clearly observe
a global minimum, but some local minima also appear for
more important delays. Therefore, one can define a basin of
attractionC, as reported in Figs.3 and4 such that any descent
algorithm will converge efficiently to the global minimum.
This indicates that it is possible to adjust efficiently some
parameters on the input or the output in order to minimize
the resulting error. With such an approach, we might be able
to account for delays that belong to the domain of convergence
in Fig. 4. If this domain of convergence is too restrictive, it
is still possible to enlarge it by designing specific training
sequences with a smoother error function (but this supposesa
pre-calibration approach).
Because of the degradation of performances as discussed
before, it is mandatory to counterbalance the relative delay
∆2−∆1 between the two components at the antenna. A natural
approach is to identify these delays, see [20], and then correct
them. But it is also possible to directly compensate the delays
without requiring a preliminary identification step.
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Fig. 4. Domain of convergenceC for a 16QAM with a Nyquist square
root shaping filter with roll-off of 0.22, which correspondsto the 3GPP
standard. Larger domains are obtained when the roll-off increases (smoother
error function).

III. A CORRECTION ALGORITHM

A. Principle and derivation of the correction algorithm

The basic idea is to introduce two advances, sayµ1 andµ2,
as indicated in Fig.5 in the envelope and phase paths. Then
the advances are tuned so as to minimize some distance, e.g.
the quadratic distance, between the resulting observationand
the original aligned signal: the optimum values of the two
advances will exactly compensate the delays introduced by
the analog paths.

+ -
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∆0

Source ρ(n)
φ(n)

µ1

µ2

RF transmitter

e(t)

x(t)

ρ(t+ µ1 − ∆1)

φ(t+ µ2 − ∆2)

z(t)

Fig. 5. Principle of the feedback loop for delays correction: two advances
µ1 and µ2 are introduced in the main path (the original signal is buffered
so as to be able to compute these advances). The remaining delays at output
are∆1 − µ1 and∆2 − µ2. The output is compared to the original aligned
input, andµ1, µ2 are adjusted so as to minimize this error. The two signals
are synchronized whenµ1 = ∆1 andµ2 = ∆2.

With the advancesµ1 andµ2 introduced in the envelope and
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phase paths, the output becomes

z(t) = ρ(t+ µ1 − ∆1) cos(φ(t+ µ2 − ∆2)). (8)

The related mean square error is

J(µ1, µ2) = E
[

|e(t)|2
]

= E
[

|x(t) − ρ(t1) cos(φ(t2))|
2
]

,

= 4R(0, 0)− 4R(∆1 − µ1,∆2 − µ2). (9)

where we notedt = nT , with T the sampling period, and
also usedt1 = t+ µ1 −∆1 andt2 = t+ µ2 −∆2 in order to
simplify the expressions.

As above-mentioned we do not have a closed-form for this
criterion nor, of course, a direct explicit solution for its
minimizers. But as we have noticed from the general shape
of the criterion, we can reach the solution with a descent
algorithm. We can use a gradient algorithm that consists in
iterating

µ1(k + 1) = µ1(k) − γ1(k)
∂J
∂µ1

∣

∣

∣

µ1=µ1(k)

µ2(k + 1) = µ2(k) − γ2(k)
∂J
∂µ2

∣

∣

∣

µ2=µ2(k)

(10)

where γ1 and γ2 are adaptation steps. The gradients are
computed according to

∂J(µ1, µ2)

∂•
=
∂E

[

|e(t)|2
]

∂•
= 2E

[

∂e(t)

∂•
e(t)

]

, (11)

In practice, we have to resort to an approximation of the
theoretical algorithm, using an appropriate approximation of
the unknown theoretical expectations. A classical solution is to
adopt a stochastic gradient algorithm which consists in using
the instantaneous gradient rather than the statistical average,
and in updating the equations at each new sample, at the rate
T . This leads to the two updating rules forµ1 andµ2:

µ1(n+ 1) = µ1(n) + γ1(n) dρ(u)
du

∣

∣

∣

t1
cosφ(t2) e(t)

µ2(n+ 1) = µ2(n) + γ2(n)ρ(t1)
d cos φ(u)

du

∣

∣

∣

t2
e(t)

(12)

In this approach, we have to adjust the two advancesµ1 and
µ2 and apply them to the input signal. Of course, working
with digital signals implies that the data are only available at
sampling points. Adopting very high sampling frequencies in
order to get some required precision, is not an efficient solution
with respect to cost, power consumption, and realization. A
classical solution for tuning delays/advances from available
data samples is digital interpolation. In order to be able to
compute the advances by digital interpolation, we need will
to dispose of some samples in the future of the current point.
Therefore the procedure include a buffering of a few samples
and the introduction of a small delay, say∆0, with respect to
the message delivered to the transmitter. Let us now turn to
the description of the interpolation procedure.
The task of approximating a function given a series of samples
is solved, in numerical analysis, by Lagrange interpolation.
A benefit of polynomial interpolators is that they can be
implemented very efficiently in hardware, and that coefficients
can be computed in real time. An efficient structure was
devised by Farrow [25]. A recent improvement is given in

[26]. Furthermore, in such structures, the delay is directly
adjustable without modification so that it is very suitable in
adaptive synchronization problems. It is worth mentioning
that in the last decade, many solutions have been proposed
for the synthesis and optimization of adjustable fractional
delay filters, especially suitable in the case of large bands
or when strong anti-aliasing is needed. In our context, the
over sampling ratio is high and the frequency response of
the interpolators is very flat in magnitude and linear in phase
in the region of interest. Therefore, we simply adopt here a
standard Lagrange interpolator, implemented using a Farrow
structure. Performances and comparisons with respect to the
choice of interpolator and with respect to the order are given
in [21]. We select here a 5th order Lagrange interpolator as
an interesting trade off between performances and complexity.
For this interpolator, ifx is a sampled sequence at the rateT ,
then the interpolated valuex(m, τ) at the time(m + τ)T is
computed by

x(m, τ) = (τ2
−1)(τ−2)τ

24 x(m− 2)

− (τ2
−4)(τ−1)τ

6 x(m− 1) + (τ2
−1)(τ2

−4)
4 x(m)

− (τ2
−4)(τ+1)τ

6 x(m+ 1) + (τ2
−1)(τ+2)τ

24 x(m+ 2).

(13)

The computational load of algorithm (12) is of about 6 real
multiplications per iteration. We have to compute the error
and two derivatives that can be simply approximated by finite
differences. Of course, we also have the cost of interpolation
in the two branches, which has a complexity ofp2 for the
Farrow structure and of3p− 1 for Candan structure, wherep
is the interpolation order.
An important point concern the gradient computation: the
derivative is evaluated on the output signal, at current time for
the two components. This imposes a quadrature demodulation
in order to separate the envelope and phase ofZ(t).
Moreover, the algorithm structure includes tracking capabili-
ties, that are important in case of a non stationnary environ-
ment. However its drawback, from the viewpoint of hardware
realization and consumption, is that the feedback involvesa
quadrature demodulation of the output of the transmitter. The
suboptimal version below eliminate this need and can function
with a simple demodulation or down-conversion.

B. A suboptimal version

It is clear that when the correction algorithm approaches the
optimum solution, that is whenµi → ∆i, we have of course
ti = t+ µi − ∆i → t, and

dρ(u)

du

∣

∣

∣

∣

t1

cosφ(t2 ≈
dρ(u)

du

∣

∣

∣

∣

t

cosφ(t) (14)

and

ρ(t1)
d cosφ(u)

du

∣

∣

∣

∣

t2

≈ ρ(t)
d cosφ(u)

du

∣

∣

∣

∣

t

. (15)

This simply means that we may afford to substitute the
computations at timesti by the similar computations at timet.
These computations can be done using the reference signal at
current time, rather than requiring the quadrature demodulation
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of the output. In such a case, the update equations forµ1, µ2

become

µ1(n+ 1) = µ1(n) + γ1(n) dρ(u)
du

∣

∣

∣

t
cosφ(t) e(t),

µ2(n+ 1) = µ2(n) + γ2(n)ρ(t) d cos φ(u)
du

∣

∣

∣

t
e(t).

(16)

With respect to the original correction algorithm, the updates
only differ by the the factor in front of the error terme(t).
Therefore, the direction of descent is not affected if these
factors have the same sign. Hence, in the domain where these
factors have the same sign, the algorithms will converge to the
same and true solution. This can give a very rough idea of the
domain of convergence of the new algorithm. As we work with
random processes, this condition shall be considered in mean.
We thus consider the domainsSi of the differencesµi − ∆i

defined by

S1 : E

[

dρ(u)

du

∣

∣

∣

∣

t1

cosφ(t2)
dρ(u)

du

∣

∣

∣

∣

t

cosφ(t)

]

≥ 0 (17)

S2 : E

[

ρ(t1)
d cosφ(u)

du

∣

∣

∣

∣

t2

ρ(t)
d cosφ(u)

du

∣

∣

∣

∣

t

]

≥ 0 (18)

where the factors exhibit the same sign in statistical mean.
Now, as an heuristic guideline, we consider the domain
C′ = C ∩ S1 ∩S2, the intersection of the original convergence
domains with theSi. This domain is given in Fig.6. Compared
to Fig. 3, we observe that the domain have been reduced
by the approximation. However, the previous condition only
gives the region where the two algorithms almost follow the
same trajectories. The suboptimal algorithm still converges
for delays outside of these regions, but along different paths.
The exact determination of the convergence domain of the
two coupled non linear equations (16) is a formidable, if not
impossible task.
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Fig. 6. DomainsC′ = C ∩ S1 ∩ S2 as the intersection of the domain
of convergenceC and the domainsSi where the gradients evaluated at the
system input, at timet, or at its output affected by a delayδi = ∆i − µi

have the same sign in mean. This gives the indication of the domain where
the suboptimal algorithm has the same behavior as the original one.

C. Results and comparisons

Performances have been evaluated using the simulation model
presented sectionII-A and figure Fig.2. The two algorithms

(12) and (16), as well as the interpolator (13) were imple-
mented. under ADS. Figure7 presents the results obtained
with the optimum correction algorithm in the case∆1 =
0.95 Ts and∆2 = 0.45 Ts, for 20 different realizations of a
16QAM sequence. We can observe that the algorithm converge
to the correct solutions.

Fig. 7. Results for the optimum correction algorithms in thecase∆1 = 0.95
and∆2 = 0.45, for 20 different realizations of a 16QAM sequence.

TableII reports the main figures for the algorithms for different
test cases. Both algorithms have the same performances after
the initial convergence. They exhibit a very large improvement
for the EVM (falling from 38% in worst case to about 0.4%),
as well as for the spectral regrowths, which are reduced to
less than 58 dBc. The standard deviation for the estimates of
the delays is less than 0.5% of the symbol period. Defining
the mean convergence timeTc as the delay to reach the final
value with a precision of0.5% of Ts, we obtain that the
suboptimal algorithm converges a bit slower than the original
one. Convergence speed, bias and variance are also linked to
the choice of the adaptation stepsγ1 andγ2. All the examples
in Table II used the same values (normalized values to the
signal power)γ1 = γ2 = 0.5. The fact that the choice is not
really crucial since there exists a large range of reasonable
values for the adaptation steps, with respect to bias, variance
and EVM is discussed in [21]. These results underline the
fact that the synchronisation has to be processed in an initial
calibration step.

Finally, we illustrate the tracking capabilities of the procedure
in case of variations of the delays during time. For instance,
a drift of some element in the system can induce a slow
variation while a commutation between functional modes of
the transmitter causes a sudden rupture. The simulation results
presented in Fig.8 shows that the solution is of interest in
such situations. It enables to track drifts and plays the role of
an autocalibration procedure in case of ruptures. Note thatin
tracking mode, the algorithm can be updated at a different
(much slower) rate than the original sampling rate. It can
also be activated only in the case of detection of a sufficient
drift from the nominal performances, or synchronously to a
commutation of mode in the system.
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∆1 ∆2 Tc EVM ( %) Relative Spectrum @3.5 MHz
Opt Sub Opt Initial After Initial After

0.2Ts 1.1Ts 150Ts 190Ts 38% 0.4% −30 dBc −58 dBc
0.45Ts 0.95Ts 140Ts 160Ts 25% 0.4% −32 dBc −59 dBc
0.5Ts 0.12Ts 130Ts 150Ts 20% 0.4% −35 dBc −60 dBc
0.1Ts 0.2Ts 85Ts 110Ts 5.5% 0.4% −48 dBc −68 dBc

TABLE II
ALGORITHMS PERFORMANCES

Fig. 8. Illustration of the behavior of the optimum algorithm in case of
nonstationarities. This shows that the algorithm can account for slow drifts of
the analog system (tracking capabilities) as well as suddenruptures that may
occur in multimodes solutions (autocalibration capabilities).

IV. GAIN AND PHASE IDENTIFICATION

The results presented above were obtained without considering
the gain and phase offset introduced by the transmitter. Indeed,
even with the knowledge of the output power and the global
phase shift introduced by the transmitter, it often remainsan
uncertainty about the gain (0.5 dB for example) and the phase
shift of the signal. We first examine the consequences of these
uncertainties on the behavior of the algorithms. We show that
the algorithms are robust to these errors but that the variance of
estimates increases. We then show that it is possible to tackle
this problem by the introduction of an identification step of
both the gain and phase offset.

A. Consequences of uncertainty on gain and phase offset

The direct consequence is that the mean square error between
the input and output of the system is not null anymore when
they are perfectly aligned: ifZ(t), the standard output

Z(t) = ρ(t− ∆1)e
jφ(t−∆2),

is affected by a complex gainK = |K|ejθ the error between
the complex envelopes becomes

J̄(∆1,∆2) = E
[

|X(t) − Z(t)|2
]

= (1 + |K|2)E
[

ρ(t)2
]

− 2|K|E [ρ(t)ρ(t − ∆1) cos(φ(t) − φ(t− ∆2) − θ)] , (19)

and we obtainJ(0, 0) = (1 + |K|2 − 2|K| cos(θ))E
[

ρ(t)2
]

.
Hence, even when the signals are aligned, the error is not
null. Furthermore, we need to check if this value remains a
minimum of the criterion. Let us now check that the criterionis
still minimum in the aligned case. We noteǫ(t) = φ(t)−φ(t−
∆2) the difference process. Its probability density function is
known and can be found in [24, 8.82, p. 369] for instance. The

phaseφ(t) of a Gaussian process being uniformly distributed
on [0, 2π], we readily obtain thatE [ǫ(t)] = 0. As far as the
variance is concerned, it is simply given by

E
[

ǫ(t)2
]

= 2Rφ(0) − 2Rφ(∆2) (20)

with Rφ(∆2) the autocorrelation function of the phase, which
can be expressed as a serie [24, 8.81, p. 369]
If we approximateǫ(t) and ρ(t)ρ(t − ∆1) as uncorrelated
variables, an approximation that is reasonable for small delays
(ρ(t) andφ(t) are independent), we have

J̄(∆1,∆2) ≈ (1 + |K|2)Rρ(0)

− 2|K|Rρ(∆1) (E [cos(ǫ)] cos(θ) + E [sin(ǫ)] sin(θ)) (21)

with Rρ(τ) the autocorrelation function of the envelopeρ(t).
Sinceǫ(t) is small, we can expand the expression inǫ, keep
the terms of the development up to the second order and take
the expectation using (20). This leads to

J̄(∆1,∆2) = (1 + |K|2)Rρ(0)

− 2|K|Rρ(∆1) (1 −Rφ(0) +Rφ(∆2)) cos(θ). (22)

Consider now∆2 fixed and small enough so thatRφ(0) −
Rφ(∆2) < 1. Then, sinceRρ(τ) is maximum forτ = 0,
the criterion is minimum for∆1 = 0, provided thatcos θ is
positive. If now∆1 is fixed, sinceRρ(τ) is always positive and
1−(Rφ(0)−Rφ(τ)) is maximum forτ = 0, we obtain that the
criterion is minimum for∆2 = 0 if cos θ is positive. Therefore,
we finally have, as expected, thatJ(0, 0) is a minimum with
respect to the two delays. The conditioncos θ > 0 is important
and means that the algorithms cannot cope with unknown
phase offsets greater thanπ/2 (but of course such critical
value cannot occur in a correct design). The deformation of
the criterion with a phase shift is illustrated in Fig.9, where
we report the criterion with respect to∆2, with ∆1 = 0
fixed, for several values of the phase shiftθ. When the phase
shift becomes greater thanπ/2, then the minimum becomes a
maximum.
These results show that the algorithms are robust and can be
used even with an imperfect knowledge of the gain, which is
important in practical situations. But since this error, whose
power converges to a finite value, is used directly in the up-
dates equations of the stochastic algorithms, the convergence
is affected by fluctuations. This is illustrated in Fig.10 where
we present a typical result of the optimum algorithm with
0.5 dB of gain mismatch and10◦ of phase offset.

B. Identification of gain and phase unknowns

Although the algorithms converge in mean to the correct
solution, the mean square error is not zero at the optimum
and the solution is corrupted by a residual noise. Therefore, it
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Fig. 9. Criterion with phase mismatchesθ. The minimum, whose value
increases, remains at∆2 = 0, for all phase offsets lower thanπ/2.

Fig. 10. Delay identification with 0.5 dB of gain mismatch and10◦of phase
offset in the case∆1 = 0.95 and∆2 = 0.45: the algorithm still converges
but is corrupted by noise. The fluctuations imply spectral regrowths that can
prevent the respect of requirements in performances.

is useful to look for a solution that reduces this residual noise,
since it degrades both EVM and spectral performances. Along
the lines of the previous developments, the natural solution is
to try to identify or correct the unknown gain. In the present
case, it is not useful to correct the gain in the transmitter
path since after all the receiver has its own equipment for
synchronization and gain control, and since other phase shifts
and attenuation occur during transmission. Therefore, thegain
can be accounted for in the feedback loop, and we can adopt an
identification type structure. The complete structure for delays
correction together with the account for uncertainty in gain and
phase shift is given in Fig.11.
As previously, we derived two algorithms for the optimum and
suboptimal algorithms. For the optimum case, the algorithm
takes into account the in phase and quadrature signals, whereas
for the suboptimal delays correction algorithm, this solution
only requires the in-phase component of the output. Indeed,
the computations on the envelope and phase are done on
the digital signals already available at the input. Using the
same principle for both versions of the algorithm, we will
demonstrate the formulation of the sub optimum version here.
With the notations in Fig.11, the error is given by

e(t) = Gρ(t) cos(φ(t) + ψ) −Kρ(t− ∆1) cos(φ(t − ∆2) + θ).
(23)

and we look forG and ψ that minimize the mean square

+ -

ρ(n)

φ(n)
µ1, µ2

RF transmitter
ρ(t+ µ1 − ∆1)

φ(t+ µ2 − ∆2)

Kρ(t− ∆1) cos(φ(t− ∆2) + θ)Gρ(t) cos(φ(t) + ψ)

G,ψ

Fig. 11. Complete structure for delays correction with identification of
possible gain and phase shift. The same errore(t) is used to correct the
delays∆1 and∆2 introduced in the transmitter and to identify gain variation
and phase shift.

error J(G,ψ) = E
[

|e(t)|
2
]

. As before, we derive a gradient
solution and implement a stochastic gradient algorithm:

G(n+ 1) = G(n) − γ3(n)ρ(t) cos(φ(t) + ψ(n))e(t)
ψ(n+ 1) = ψ(n) − γ4(n)G(n)ρ(t) sin(φ(t) + ψ(n))e(t).

(24)
In terms of the complex gaiñG = G exp(jψ) = Gr + jGi

and the complex envelopes, the error can also be expressed as
e(t) = Re

(

G̃X(t) − Z(t)
)

, which leads to the recursions

{

Gr(n+ 1) = Gr(n) − γ3(n)ρ(t) cos(φ(t))e(t)
Gi(n+ 1) = Gi(n) + γ4(n)ρ(t) sin(φ(t))e(t)

(25)

This formulation is much more interesting for the implemen-
tation, since it only involves available signals and does not
require evaluations of trigonometric functions of the estimates,
as in (24). For completeness, let us also note that the algorithm
derived from the complex errore(t) = G̃X(t) − Z(t), which
requires a quadrature demodulation of the output, is

G̃(n+ 1) = G̃(n) − γ3X
∗(t)

(

G̃(n)X(t) − Z(t)
)

. (26)

C. Results

In the very same conditions as in Fig.10, that is with 0.5 dB
of gain variation and a phase offset of 10◦, with ∆1 = 0.95
and ∆2 = 0.45, the introduction of the correction of gain
and phase in the feedback loop using (25) leads to results
very similar to the original results in Fig.7 without gain and
phase perturbations. These results are quantified in TableIII
where we consider different scenarios for the gain and phase
mismatches. We obtain a large improvement both for the EVM
(that falls to about 0.5% near the result without gain and
phase mismatch) and for the spectrum at 3.5 MHz, which is
attenuated to less than 58 dBc. The only concern is a slower
mean convergence which is the price to pay to account for
these further mismatches.

V. CONCLUSIONS

Polar based transmitter architectures, which are already rec-
ognized solutions, are regarded as very promising structures
for future realizations. In this work, we considered the critical
issue of delays mismatches in polar based transmiter archi-
tectures, which degrades the performances, particularly with
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Gain mismatch phase mismatch Tc EVM ( %) Relative Spectrum @3.5 MHz
Opt Sub Opt without identification with identification without identification with identification

3 dB 45◦ 350 Ts 420 Ts 23% 0.5% −40 dBc −58 dBc
1 dB 30◦ 300 Ts 400 Ts 11% 0.5% −47 dBc −58 dBc

0.5 dB 10◦ 280 Ts 350 Ts 3.4% 0.5% −55 dBc −59 dBc
0.2 dB 2◦ 250 Ts 320 Ts 0.8% 0.5% −58 dBc −60 dBc

TABLE III
ALGORITHMS PERFORMANCES WITH GAIN IDENTIFICATION FOR∆1 = 0.45 Ts AND ∆2 = 0.95 Ts

increasing data rates. We address this problem by digital signal
processing. Based on the minimization of the mean square
error, we present a baseband algorithm for the correction of
delays mismatches. We also propose a suboptimal version
that minimizes the realization and implementation costs. We
address the fact that the system can also introduce a gain and
phase shift. Although it is not necessary to compensate these
further mismatches from the system viewpoint, it is useful
to account for them in the feedback loop to preserve good
performances. This is achieved by the insertion of an identifi-
cation procedure. Simulation results show a high improvement
in the performances, with an EVM below 0.5% and a spectrum
level at 3.5 MHz lower than -58 dBc in 30 kHz bandwidth.
This demonstrates the real interest of these approaches forthe
design and optimization of current and future transceivers.
The exact strategy for the compensation of the delays in a
polar architecture has probably to be defined on a case-by-
case basis. Since there is no possible useful data transmission
during the convergence time, a initial calibration may employ
the first correction algorithm, while the suboptimal version can
be reserved for refinement and tracking of nonstationarities
during operational modes. Of course, the feedback loop can
also be used for other compensations, for instance ripples
in the frequency response, and the correction algorithm shall
cooperate with the compensation of nonlinearities of the power
amplifier.
Although it is still possible to further optimize the elements
of the transmitter in order to minimize the analog mismatches
distorsions, we believe that it is also possible to relax some
of the constraints and report a part of the analog complexity
to the baseband digital signal processing.
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