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Source coding with escort distributions and Rényi entropy bounds
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We discuss the interest of escort distributions and Rényi entropy in the context of source coding. We first
recall a source coding theorem by Campbell relating a generalized measure of length to the Rényi–Tsallis
entropy. We show that the associated optimal codes can be obtained using considerations on escort-
distributions. We propose a new family of measure of length involving escort-distributions and we show
that these generalized lengths are also bounded below by the Rényi entropy. Furthermore, we obtain that
the standard Shannon codes lengths are optimum for the new generalized lengths measures, whatever
the entropic index. Finally, we show that there exists in this setting an interplay between standard and
escort distributions.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Rényi and Tsallis entropies extend the standard Shannon–
Boltzmann entropy, enabling to build generalized thermostatistics,
that include the standard one as a special case. This has received
a very high attention and there is a wide variety of applications
where experiments, numerical results and analytical derivations
fairly agree with these new formalisms [1]. These results have also
raised interest in the general study of information measures and
their applications. The definition of Tsallis entropy was originally
inspired by multifractals whereas the Rényi entropy is an essential
ingredient [2,3], e.g. via the definition of the Rényi dimension. For
a distribution p of a discrete variable with N possible microstates,
the Rényi entropy of order α, with α � 0, is defined by

Hα(p) = 1

1 − α
log

N∑
i=1

pα
i . (1)

By L’Hospital rule, for α = 1, we recover the Shannon entropy

H1(p) = −
N∑

i=1

pi log pi . (2)

The base of the logarithm is arbitrary. In the following, we will
denote logD the base D logarithm. The Tsallis entropy is a sim-
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ple transformation of the Rényi entropy, but is nonextensive. Often
associated to these entropies, and central in the formulation of
nonextensive statistical mechanics is the concept of escort distribu-
tions: if {pi} is the original distribution, then its escort distribution
P is defined by

Pi = pq
i∑N

i=1 pq
i

. (3)

The parameter q behaves as a microscope for exploring different
regions of the measure p [4]: for q > 1, the more singular regions
are amplified, while for q < 1 the less singular regions are accentu-
ated. The escort distributions have been introduced as a tool in the
context of multifractals. Interesting connections with the standard
thermodynamic are in [4,5]. Discussion of their geometric prop-
erties can also be found in [6]. It is also interesting to note that
the escort distributions can be found as the result of a maximum
entropy problem with a constraint on the expected value of a log-
arithmic quantity, see [2, p. 53] in the context of multifractals, or
[7] for a different view. We shall also point out that the ‘deformed’
information measure like the Rényi entropy (1) and the escort dis-
tribution (3) are originally two distincts concepts, as indicated here
by the different notations α and q. There is a lengthy discussion on
this point in [8].

In the information theory of communication, the entropy is the
measure of the quantity of information in a message, and a pri-
mary aim is to represent the possible messages in an efficient
manner, that is to find a compact representation of the informa-
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tion according to a measure of ‘compactness’. This is the role of
source coding. In this note, we discuss the interest of escort dis-
tributions and alternative entropies in this context. This suggests
possible connections between coding theory and the measure of
complexity in nonextensive statistical mechanics. Related works
are the study of generalized channel capacities [9], the notion of
nonadditive information content [10], the presentation of a gen-
eralized rate distorsion theory [11]. The first section is devoted
to a very short presentation of the source coding context, and to
the presentation of the fundamental Shannon source coding the-
orem. In Section 3, we describe a source coding theorem relating
a new measure of length and the Rényi entropy. In the next sec-
tion, we show that it is possible to obtain the very same optimum
codes, as well as a practical procedure, using a reasoning based on
the nonextensive generalized mean as the measure of length. In
Section 5, we introduce another measure of length, involving es-
cort distribution, and obtain general inequalities for this measure,
where the lower bound, once again is a Rényi entropy. We show
that the corresponding optimum codes are the standard Shannon
codes. Finally, in Section 6 we discuss the connections between
these different results.

2. Source coding

In source coding, one considers a set of symbols X = {x1, x2,

. . . , xN }, and a source that produces symbols xi from X with prob-
abilities pi where

∑N
i=1 pi = 1. The aim of source coding is to

encode the source using an alphabet of size D , that is to map each
symbol xi to a codeword ci of length li expressed using the D let-
ters of the alphabet. It is known that if the set of lengths li satisfies
the Kraft–Mac Millan inequality

N∑
i=1

D−li � 1, (4)

then there exists a uniquely decodable code with these lengths,
which means that any sequence ci1ci2 · · · cin can be decoded un-
ambiguously into a sequence of symbols xi1xi2 · · · xin . Furthermore,
any uniquely decodable code satisfies the Kraft–Mac Millan in-
equality (4). The Shannon source coding theorem (noiseless cod-
ing theorem) indicates that the expected length of the code L̄ is
bounded below by the entropy of the source, H1(p), and that the
best uniquely decodable code satisfies

H1(p) � L̄ =
∑

i

pili < H1(p) + 1, (5)

where the logarithm in the definition of the Shannon entropy is
taken in base D . This result indicates that the Shannon entropy
H1(p) is the fundamental limit on the minimum average length for
any code constructed for the source. The lengths of the individual
codewords, also called ‘bit-numbers’ [5, p. 46], are given by

li = − logD pi, (6)

where logD denotes the logarithm in base D . Obviously these code
lengths enable to attain the entropy in the left of the inequality (5).
The characteristic of these optimum codes is that they assign the
shorter codewords to the most likely symbols and the longer code-
words to unlikely symbols. The uniquely decodable code can be
chosen to have the prefix property, i.e. the property that no code-
word is a prefix of another codeword.

3. Source coding with Campbell measure of length

It is well known that Huffman coding yields a prefix code
which minimizes the expected length and approaches the opti-
mum limit li = − logD pi . What is much less well known is that
some other forms of lengths have been considered [12], the first
and definitely fundamental contribution being the paper of Camp-
bell [13]. Since the codewords lengths obey to the relation (6), low
probabilities yield very long words. But the cost of using a word
is not necessarily a linear function of its length, and it is possible
that adding a letter to a long word cost much more than adding
a letter to a shorter word. This led Campbell to the proposal of
a new average length measure, featuring an exponential account
of the elementary lengths of the codewords. This length, which is
called a β-exponential mean or Campbell length, is a Kolmogorov–
Nagumo generalized mean associated to an exponential function.
It is defined by

Cβ = 1

β
logD

N∑
i=1

pi Dβli , (7)

where β is a strictly positive parameter. The remarkable result [13]
is that just as Shannon entropy is the lower bound on the average
codeword length of an uniquely decodable code, the Rényi entropy
of order q, with q = 1/(β +1), is the lower bound on the exponen-
tially weighted codeword length (7):

Cβ � Hq(p). (8)

A simple proof of this result will be given below. It is easy to check
that the equality is achieved by choosing the li such that

D−li = Pi = pq
i∑N

j=1 pq
j

, (9)

that is

li = −q logD pi + (1 − q)Hq(p). (10)

Obviously, the individual lengths obtained this way can be made
smaller than the Shannon lengths li = − logD pi , especially for
small pi , by selecting a sufficiently small value of q. Hence, the
procedure effectively penalizes the longer codewords and yields a
code different from Shannon’s code, with possibly shorter code-
words associated to the low probabilities.

4. Source coding with nonextensive generalized mean

In the standard measure of average length L̄ = ∑
i pili , we have

a linear combination of the individual lengths, with the probabil-
ities pi as weights. In order to increase the impact of the longer
lengths with low probabilities, the Campbell’s length uses an ex-
ponential of the length. A different approach to the problem can
be to modify the weigths in the linear combination, so as to raise
the importance of the terms with low probabilities. A simple way
to achieve this is to deform, flatten, the original probability distri-
bution and use the new distribution as weights rather than the pi .
Of course, a very good candidate is the escort distribution, which
leads us to the ‘average length measure’

Mq =
N∑

i=1

pq
i∑

j pq
j

li =
N∑

i=1

Pili, (11)

which is nothing but the generalized expected value of nonex-
tensive statistical mechanics according to the third mean values’
choice of Tsallis, Mendes and Plastino [14]. For the virtual source
with distribution P , the standard expected length is Mq , and the
classical Shannon noiseless source coding theorem immediately
applies, leading to

Mq � H1(P ), (12)

with equality if

li = − logD Pi (13)
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Table 1
Examples of codes in the binary case, for different values of q.

pi q = 1 q = 0.7 q = 0.4

0.48 0 0 00
0.3 10 10 01
0.1 110 1100 100
0.05 1110 1101 101
0.05 11110 1110 110
0.01 111110 11110 1110
0.01 111111 11111 1111

which is exactly the lengths in (10) obtained via Campbell’s mea-
sure. This easy result has also be mentioned in [10].1

The simple relation li = − logD Pi for the minimization of Mq

subject to the Kraft–Mac Millan inequality has a direct practical
implication. Indeed, it suffices to feed a standard coding algorithm,
namely a Huffman coder, with the escort distribution P instead of
the natural distribution p, to obtain as a result a code tailored for
the Campbell’s length measure Cβ or equivalently for the length
measure Mq . A simple example, with D = 2, is reported in Table 1:
we used a standard Huffman algorithm with the original distribu-
tion and the escort distributions with q = 0.7 and q = 0.4.

It is worth noting that some specific algorithms have been de-
veloped for Campbell’s length [12,15,16]. The remark above gives
an easy alternative. An important point is that these new codes
have direct applications: they are optimum for minimizing the
probability of buffer overflows [15], or, with q > 1 for maximizing
the chance of the reception of a message in a single snapshot [17].
In the second case, the choice q > 1 increases the main features
of the probability distribution, then leading to select more short
codewords for the highest probabilities; this maximizes the chance
of a complete reception of a message in a single transmission of
limited size.

5. Another measure of length with Rényi bounds

Given these results, it is now interesting to introduce a new
measure of average length, similar to Campbell’s length but mixing
both a an exponential weight of individual lengths li and an escort
distribution. This measure is defined by

Lq = 1

q − 1
logD

[
N∑

i=1

pq
i∑

j pq
j

D(q−1)li

]
. (14)

Some specific values are as follows. It is easy to see that L0 =
− logD

∑
i D−li + logD N . When q → +∞, the maximum of the

probabilities, say pk = arg maxi pi emerges, and L∞ = lk , where lk
is the length associated to pk , the maximum among the probabili-
ties pi . By L’Hospital’s rule, we also obtain that L1 = L̄ = ∑

i pili . As
for Campbell’s measure, it is possible to show that Lq is bounded
below by the Rényi entropy.

As in Campbell’s original proof, let us consider the Hölder in-
equality

(
N∑

i=1

|xi |p

)1/p(
N∑

i=1

|yi|p′
)1/p′

�
N∑

i=1

|xi yi |

for all sequences (x1, . . . , xN ), (y1, . . . , yN ) ∈ R
N (15)

1 In this interesting paper, another inequality is given for the generalized mean:
Mq � Sq(p), where Sq is the normalized version of Tsallis entropy. In fact, this is
only true under the condition

∑
i expq(−li) � 1, with the equality occurring for

li = − lnq(pi), where expq and lnq denote the standard nonextensive q-deformed
exponential and logarithm. When these lengths li also fulfill the Kraft–Mac Millan
inequality we have Mq = Sq(p) > H1(P ).
for p or p′ in (0,1) and such that 1/p + 1/p′ = 1. Note that the
reverse inequality is true when p and p′ are in [1,+∞). Suppose
that the li are the lengths of the codewords in a uniquely decod-
able code, which means that they satisfy the Kraft inequality (4).
If we let now xi = pα

i D−li and yi = p−α
i , it comes(

N∑
i=1

pαp
i D−pli

)1/p(
N∑

i=1

p−αp′
i

)1/p′

�
N∑

i=1

D−li � 1, (16)

where the last inequality in the right is the Kraft inequality.
If we let αp = 1, then α = −1/β , and −αp′ = α/(α − 1) =

1/(β + 1). Then, (16) reduces to(
N∑

i=1

pi Dβli

)−1/β(
N∑

i=1

p1/(β+1)

i

)(β+1)/β

� 1. (17)

Taking the base D logarithm, we obtain the Campbell theorem
Cβ � Hq(p), with q = 1/(β + 1).

If we now take αp = q and choose −αp′ = 1, we obtain(
N∑

i=1

pq
i D−pli

)1/p

� 1, (18)

where we used of course the fact that the probabilities sum to one.
The condition 1/p + 1/p′ = 1 easily gives p = 1 − q. Dividing the
two sides by (

∑
i pq

i )
1/(1−q) , taking the logarithm and changing the

sign of the inequality, we finally obtain

1

q − 1
logD

(
N∑

i=1

pq
i∑

j pq
j

D(q−1)li

)
� 1

1 − q
logD

N∑
i=1

pq
i , (19)

which gives the simple inequality

Lq � Hq. (20)

Hence we obtain that the new length measure of order q is lower
bounded by the Rényi entropy of the same order. Note that this re-
sult include Shannon result in the special case q = 1. Interestingly,
it is easy to check that we have equality in (20) for li = − logD pi ,
which is nothing but the optimal lengths in the Shannon coding
theorem. Hence, it is remarkable that the whole series of inequal-
ities (20) become equalities for the choice li = − logD pi which
appears as a kind of universal value in this context.

This result can draw attention to alternative coding algorithms,
based on the minimization of Lq , or alternative characterizations
of the optimal code. For instance, the inequality (20) shows, as
a direct consequence, that the Shannon code with li = − logD pi
minimizes the length of the codeword associated to the maxi-
mum probability. Indeed, when q → +∞, L∞ → lk the length of
the codeword of maximum probability, and L∞ is minimum when
lk has its minimum value H∞ = − logD pk .

Since the Rényi and Tsallis entropy are related by a simple
monotone transformation, inequalities similar to (8) and (20) ex-
ist with Tsallis entropy bounds.

6. Connections between the different length measures

It is finally useful to exhibit an interplay between the two
length measures, their minimizers, and the standard and escort
distributions. The Campbell measure in (7) involves the distribu-
tion p, an exponential weight with index β . The optimum lengths
that achieve the equality in the inequality (8) are the bit-numbers
associated to the escort distribution li = − logD Pi . On the other
hand, the measure (14) involves the escort distribution P instead
of p, has an index q and the optimum lengths that achieve the
equality in the extended source coding inequality (20) are the bit-
numbers li = − logD pi associated to the original distribution. We
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know that the transformation q ↔ 1/q [14, p. 543] links the origi-
nal and escort distribution, that is the distribution p is the escort
distribution with index 1/q of the distribution P . This remark en-
ables to find an equivalence between thermostatistics formalisms
based on linear and generalized averages [18,19]. Here, when we
substitute q by 1/q in (14), and therefore P by p, we end with
Campbell length (7) where q = 1/(β + 1). Concerning the entropy
bound in (8) and (20), we shall also observe that H 1

q
(P ) = Hq(p),

so that we have finally equivalence between the two inequalities
(8) and (20). This is a new illustration of the duality between stan-
dard and escort distributions.

As a last remark, let us mention that if we apply Jensen in-
equality to the exponential function in the sum defining Lq (14),
we then obtain Mq � Lq , where Mq is the generalized mean, taken
with respect to the escort distribution, and we have

Mq � Lq � Hq. (21)

The equality in Mq � Lq means that the transformation in Jensen
inequality is a straight line, which means q = 1. In such case, we
still obtain M1 � H1(p), which is nothing but the standard Shan-
non coding theorem.

7. Conclusions

In this Letter, we have pointed out the relevance of Rényi en-
tropy and escort distributions in the context of source coding. This
suggests possible connections between coding theory and the main
tools of nonextensive statistical mechanics. We have first outlined
an overlooked result by Campbell that gave the first operational
characterization of Rényi entropy, as the lower bound in the min-
imization of a deformed measure of length. We then considered
some alternative definitions of measure of length. We showed that
Campbell’s optimum codes can also be obtained using another nat-
ural measure of length based on escort distributions. Interestingly,
this provides an easy practical procedure for the computation of
these codes. Next, we introduced a third measure of length in-
volving both an exponentiation, as in Campbell’s case, and escort
distributions. We showed that this length is also bounded below
by a Rényi entropy. Finally, we showed that the duality between
standard and escort distributions connects some of these results.

Further work should consider the extension of these results,
namely the new lengths definitions, in the context of channel cod-
ing. With these new lengths, we also intend to investigate the
problem of model selection, as in Rissanen MDL (Minimum De-
scription Length) procedures.
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