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Abstract7

An important problem in statistics is to determine a joint probability dis-

tribution from its marginals and an important problem in Computed To-

mography (CT) is to reconstruct an image from its projections. In the

bivariate case, the marginal probability density functions f1(x) and f2(y)

are related to their joint distribution f(x, y) via horizontal and vertical line

integrals. Interestingly, this is also the case of a very limited angle X ray CT

problem where f(x, y) is an image representing the distribution of the ma-

terial density and f1(x), f2(y) are the horizontal and vertical line integrals.

The problem of determining f(x, y) from f1(x) and f2(y) is an ill-posed

undetermined inverse problem. In statistics the notion of copula is exactly

introduced to characterize all the possible solutions to the problem of recon-

structing a bivariate density from its marginals. In this paper, we elaborate

on the possible link between Copula and CT and try to see whether we can

use the methods used in one domain into the other.
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Entropy, Archimedian Copulas.10

1. Introduction11

The word copula originates from the Latin meaning link, chain, union. In12

statistical literature, according to the seminal result in the copula’s theory13

stated by Abe Sklar [1] in 1959, a copula is a function that connects a14

multivariate distribution function to its univariate marginal distributions.15

There is an increasing interest concerning copulas, widely used in Financial16

Mathematics and in modelling of Environmental Data [2, 3]. Recently, in17

Computational Biology, copulas were used for the reconstruction of accurate18

cellular networks [4]. Copula appear to be a powerful tool to model the19

structure of dependence [5, 6]. Copulas are useful for constructing joint20

distributions, particularly with non-Gaussian random variables [7].21

In 2D case, interpreting the joint probability density function f(x, y) as22

an image and its marginal probability densities f1(x) and f2(y) as horizontal23

and vertical line integrals:24

f1(x) =

∫
f(x, y) dy and f2(y) =

∫
f(x, y) dx (1)

we see that the problem of determining f(x, y) from f1(x) and f2(y) is an ill-25

posed (inverse) problem [8]. It is a well known fact that while a distribution26

has a unique set of marginals, the converse is not necessarily true. That is,27

many distributions may share a common subset of marginals. In general,28

it is not possible to uniquely reconstruct a distribution from its marginals.29
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Forward problem: Inverse problem:

Given f(x, y) compute Given f1(x) and f2(y)

f1(x) and f2(y) determine f(x, y)

(a) (b)

Figure 1: Forward and inverse problems

This is illustrated in Figure 1: Fig.1 (a) shows the forward problem given by30

(1), whereas Fig.1 (b) illustrates the inverse problem. As we will see later,31

all functions in the form of32

f(x, y) = f1(x) f2(y)Ω(x, y) (2)

where Ω(x, y) = c(F1(x), F2(y)) and c(u, v) is any copula density function,33

are solutions of this problem. Interestingly, this is very similar to the pdf34

reconstruction problem considered in [9], where a special copula was de-35

signed. The approach in [9] could certainly be interpreted using the results36

presented here.37

In 1917, Johann Radon introduced the Radon transform (RT) [10, 11]38

which was later used in CT [12]. Indeed, if we denote by f(x, y), the spatial39

distribution of the material density in a section of the body, a very simple40
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model that relates a line of the radiography image p(r, θ) at direction θ to41

f(x, y) is given by the Radon transform:42

p(r, θ) =

∫

Lr,θ

f(x, y) dl =

∫∫

R2

f(x, y)δ(r − x cos θ − y sin θ) dx dy. (3)

The experimental setup is presented in Figure 3.

Source

y

x

f(x, y)

θ

r

rp(r, θ)

dl

Figure 2: X ray Computed Tomography: 2D parallel geometry.

43

If now we consider only the horizontal θ = 0 projection and the vertical44

θ = π/2 projection, we see easily the connexion between these two problems.45

The main object of this paper is to explore in more details these relations,46

and exploit the similarity between the two problems as a new approach to47

image reconstruction in Computed Tomography.48

The rest of this paper is organized as follows: In section 2, we present a49

summary of the necessary definitions and properties of copulas and highlight50

methods to generate a copula. In section 3, we present the main tomographic51
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image reconstruction methods based on the Radon inversion formula. In52

section 4, we will be in the heart of the link and relations between the53

notions of these two previous sections. Section 5 and 6 are devoted to54

details concerning our method. Some preliminary results from our Copula-55

Tomography Matlab package [13] which available for download are given in56

section 6.57

2. Copula58

In this section, we give a few definitions and properties of copulas that59

we need in the rest of the paper. First, we note by F (x, y) a bivariate60

cumulative distribution function (cdf), by f(x, y) its bivariate probability61

density function (pdf), by F1(x), F2(y) its marginal cdf’s and f1(x), f2(y)62

their corresponding pdf’s with their classical relations:63

F (x, y) =

∫ x

−∞

∫ y

−∞

f(u, v) du dv, f(x, y) =
∂2F (x, y)

∂x ∂y
,

F1(x) =

∫ x

−∞

f1(u) du = F (x,∞), F2(y) =

∫ y

−∞

f2(v) dv = F (∞, y),

f1(x) =
dF1(x)

dx
=

∫
f(x, y) dy, f2(y) =

dF2(y)

dy
=

∫
f(x, y) dx.

Definition 1. Bivariate Copula: A bivariate copula, or shortly a copula is64

a function from [0, 1]2 to [0, 1] with the following properties:65

• ∀u, v ∈ [0, 1] , C(u, 0) = 0 = C(0, v);66

• ∀u, v ∈ [0, 1] , C(u, 1) = u and C(1, v) = v;67

• ∀u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2, C(u2, v2)−C(u2, v1)−68

C(u1, v2) + C(u1, v1) ≥ 0.69
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Theorem 1. Sklar’s Theorem: Let F be a two-dimensional distribution70

function with marginal distributions functions F1 and F2. Then there exists71

a copula C such that:72

F (u, v) = C(F1(x), F2(y)). (4)

Conversely, for any univariate distribution functions F1 and F2 and any73

copula C, the function F is a two-dimensional distribution function with74

marginals F1 and F2, given by (4). Furthermore, if the marginal functions75

are continuous, then the copula C is unique, and is given by76

C(u, v) = F (F−1
1 (u), F−1

2 (v)). (5)

Definition 2. Copula Density: From (4) and differentiating (5) gives the77

density of a copula78

c(u, v) =
∂2C

∂u∂v
=

f
(
F−1

1 (u), F−1
2 (v)

)

f1

(
F−1

1 (u)
)

f2

(
F−1

2 (v)
) , (6)

and thus79

f(x, y) = f1(x) f2(y) c(F1(x), F2(y)) (7)

An usual simple example is the product or independent copula:80

C(u, v) = u v −→ c(x, y) = 1, (u, v) ∈ [0, 1]2 . (8)

Property 1. Any copula C(u, v), satisfies the inequality81

W (u, v) ≤ C(u, v) ≤ M(u, v), (9)

where the Fréchet-Hoeffding upper bound copula M(u, v) (or comono-82

tonicity copula) is :83

84

M(u, v) = min(u, v), (u, v) ∈ [0, 1]2 . (10)
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and the Fréchet-Hoeffding lower bound W (u, v) (or countermonotonic-85

ity copula) is:86

W (u, v) = max {u + v − 1, 0} , (u, v) ∈ [0, 1]2 . (11)

Generating Copulas by the Inversion Method: A straight forward87

method is based directly on Sklar’s theorem. Given F (x, y) the joint cdf of88

two variables X, Y and F1(x) and F2(y) their marginal cdf’s, all assumed89

to be continuous. The corresponding copula can be constructed by using90

the unique inverse transformations (Quantile transform) x = F−1
1 (u), y =91

F−1
2 (v),92

C(u, v) = F (F−1
1 (u), F−1

2 (v)), (12)

where u, v are uniform on [0, 1].93

Archimedean Copulas: The Archimedean copulas form an important94

class of copulas ([14] page 109) which generalise the usual copulas.95

Theorem 2. Let ϕ be a continuous, strictly decreasing function from [0, 1]96

to [0,∞] such that ϕ(1) = 0, and let ϕ[−1] be the pseudo-inverse of ϕ. Let97

C be the function from [0, 1]2 to [0, 1] given by98

C(u, v) = ϕ[−1] (ϕ(u) + ϕ(v)) . (13)

Then C is a copula if and only if ϕ is convex.99

Archimedean copulas are in the form (13) and the function ϕ is called100

the generator of the copula. ϕ is a strict generator if ϕ(0) = ∞, then101

ϕ[−1] = ϕ−1 and102

C(u, v) = ϕ−1 (ϕ(u) + ϕ(v)) . (14)
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Property 2. The following algebraic properties are satisfied by any Archimedean103

copula C:104

• C(u, v) = C(v, u) meaning that C is symmetric;105

• C(C(u, v), w) = C(u,C(v,w));106

• If a > 0, then aϕ is again a generator of C.107

Theorem 3. Let C be an Archimedean copula with generator ϕ in Ω. Then108

for almost all u and v in [0, 1],109

ϕ
′

(u)
∂C(u, v)

∂v
= ϕ

′

(v)
∂C(u, v)

∂u
. (15)

Property 3. One easy way to compute the bivariate copula density function110

c(u, v) of the copula C(u, v), using the generator function ϕ under some111

conditions is given by:112

c(u, v) = −
ϕ

′′

(C(u, v))ϕ
′

(u)ϕ
′

(v)

[ϕ′(C(u, v))]
3 . (16)

3. Tomography113

In 2D, the mathematical problem of tomography is to determine the114

bivariate function f(x, y) from its line integrals p(θ, r) (see Eq.(3)). Radon115

has shown that this problem has a unique solution if we know p(r, θ) for all116

θ ∈ [0, π] and all r ∈ R and can be computed by so called the inverse Radon117

transform118

f(x, y) =
1

2π

∫ π

0

∫
∞

0

∂p(r, θ)

∂r
r − x cos φ − y sin φ

dr dφ (17)

However, if the number of projections is limited, then the problem is ill-119

posed and the problem has an infinite number of solutions.120
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To present briefly the main classical methods in CT, we start by decom-121

posing the inverse RT in the following parts:122

Derivative D: pθ(r) =
∂p(r, θ)

∂r
,

123

Hilbert Transform H: p̃(r′, θ) =
1

π

∫
∞

0

p(r, θ)

(r − r′)
dr,

124

Backprojection B: f(x, y) =
1

2π

∫ π

0
p̃(x cos θ + y sin θ, θ) dθ.

Then defining the one dimensional inverse Fourier transform F−1
1 by125

P (Ω, θ) =

∫
p(r, θ) exp [jΩr] dr

and using the properties of the Fourier transform F1 and the derivative D:126

P̄ (Ω, θ) = ΩP (Ω, θ),

the relation between H and F1 yields :127

˜̄P (Ω, θ) = sign (Ω)ΩP̄ (Ω, θ) = |Ω|P (Ω, θ).

Finally the filtered backprojection which is currently the most used recon-128

struction method is performed by the following formula :129

f(x, y) = B HD p(r, θ) = B F−1
1 |Ω| F1 p(r, θ) (18)

that is130

p(r,θ)
−→

FT

F1

−→
Filter

|Ω|

−→
IFT

F−1
1

−→
Backprojection

B

f(x,y)
−→

9



In X-ray CT, if we have a great number of projections uniformly dis-131

tributed over the angles interval [0, π] , the filtered backprojection (FBP) or132

even the simple backprojection (BP) image are good solutions to the inverse133

CT problem [15]. But, when we are restricted to only two projections, the134

FBP or BP images are not correct reconstruction [16–18].135

4. Link between Copula and Tomography136

Now, let consider the particular case where we have only two projections137

θ = 0 and θ = π/2. Then138

p0(r) =

∫∫
f(x, y)δ(r − x) dx dy =

∫
f(r, y) dy,

pπ/2(r) =

∫∫
f(x, y)δ(r − y) dx dy =

∫
f(x, r) dx

and if we let f1 = p0 and f2 = pπ/2 we can deduce the following new139

methods, inspired by the reconstruction approaches in CT, for the inverse140

problem that consists in determining the probability density f(x, y) from its141

marginals f1(x) and f2(y):142

Backprojection:143

f(x, y) =
1

2
(f1(x) + f2(y)). (19)

Filtered Backprojection:144

f(x, y) =
1

2

(∫ ∂f1

∂x (x′)

x′ − x
dx′ +

∫ ∂f2

∂y (y′)

y′ − y
dy′

)
(20)
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which can also be implemented in the Fourier domain as it follows145

f(x, y) = 1
2

∫
e+jux|u|

(∫
e−jux′

f1(x
′) dx′

)
du

+1
2

∫
e+jvy|v|

(∫
e−jvy′

f2(y
′) dy′

)
dv.

5. How to use Copula in Tomography146

The definition and the notion of copula give us the possibility to propose147

new X ray CT methods. Let first consider the case of two projections. In this148

case, immediately, we can propose a first use which corresponds to the case149

of independent copula, as given in (8). We call this method Multiplicative150

Backprojection (MBP), [19]151

MBP:152

f(x, y) = f1(x) f2(y) (21)

If we compare the equation (19) to (21) instead of the classical BP which153

is an additive operation or Additive Backprojection, the name MBP comes154

naturally. In Figure 3 we give comparisons of BP and MBP. As we can see155

on the image original 1, at least the image obtained by MBP is better than156

the one obtained by BP and it satisfies exactly the marginals.157

We may still do better if we used choose another copula rather than the158

independent copula, by proposing the following method that we call Copula159

Backprojection (CopBP).160

CopBP:161

f(x, y) = f1(x) f2(y) c (F1(x), F2(y)) (22)
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where c(u, v) is a parametrized copula.162

Here the main question is how to choose an appropriate copula for the163

particular application. This problem can be thought as a way to introduce164

some prior information, just enough to choose an appropriate family of cop-165

ula. For example if we know that the joint density has only one mode,166

and can be approximated by a bivariate Gaussian, Φ−1 denoting the inverse167

of the standard Gaussian cdf, then we can use a Gaussian copula whose168

expression is given by169

Cρ(u, v) =
A

2π

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

exp

{
−(s2 − 2ρst + t2)

2(1 − ρ2)

}
ds dt

where A =
(
1 − ρ2

)−1/2
and the particular cases where ρ = −1, 0, 1 cor-170

respond respectively to copulas W (u, v), Π(u, v) and M(u, v). The corre-171

sponding Gaussian copula density is :172

cρ(u, v) = A exp

{
−A2

2

(
(ρu)2 − 2ρuv + (ρv)2

)}
.

Finally, the function f(x, y) we are looking for will be :173

f(x, y) = Af1(x)f2(y) exp

{
−

(
ρ2x2 − 2ρxy + ρ2y2

)

2(1 − ρ2)

}
(23)

where Φ−1(u) = x and Φ−1(v) = y. The particular reconstruction (23) is174

parametrized the correlation coefficient ρ, which, of course, shall be esti-175

mated. Figure 3 presents CopBP reconstructions obtained using this Gaus-176

sian copula. We see the interest of such an approach compared to standard177

BP, although, of course, it should be refined, by incorporation of more prior178

knowledge.179
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Example 1 :

Original 1 BP f̂(x, y) FBP f̂(x, y)

MBP f̂(x, y) CopBP f̂(x, y)

Example 2 :

Original 2 BP f̂(x, y) FBP f̂(x, y)

MBP f̂(x, y) CopBP f̂(x, y)

Figure 3: A comparison between BP, FBP, MBP and CopBP on two synthetic examples.
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6. Maximum Entropy Copulas180

The selection of a particular copula is a difficult task. We propose here to181

look at this ill-posed inverse problem by so called maximum entropy (ME)182

method, using copula. The principle of ME was first expounded by E.T.183

Jaynes in two seminal papers in 1957 ([20, 21]). It is the way to assign a184

probability distribution to a quantity on which we have partial information.185

The classical ME problem is to assign a probability law to a quantity on186

which we only know a few moments. Here, the problem is a bit different,187

because the partial information we have is not in terms of moments but in188

the form of the following constraints:189





C1 :

∫
f(x, y) dy = f1(x), ∀y

C2 :

∫
f(x, y) dx = f2(y), ∀x

C3 :

∫∫
f(x, y) dx dy = 1.

(24)

Hence, the goal is to find the most general copula, in the ME sense, com-190

patible with available information, that is, with the marginals/projections191

at hands.192

6.1. Problem’s formulation193

Among all possible f(x, y) satisfying the constraints (24) choose the one

which optimizes a criterion Ω(f), i.e :

f̂ := maximize {Ω(f)} subject to (24).
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Since the constraints are linear, if we choose a criterion which is a concave194

function, then there is a unique solution to the problem. Many entropies195

functional can serve as an objective function, e.g. [22–27] :196

1. Ω1(f) = −

∫∫
| f(x, y) |2 dx dy, (−Energy or L2 − norm)197

2. Ω2(f) = −

∫∫
f(x, y) ln f(x, y) dx dy, (Shannon Entropy),198

3. Ω3(f) =

∫∫
ln f(x, y) dx dy, (Burg Entropy),199

4. Ω4(f) =
1

1 − α

∫∫
(fα(x, y) − 1) dx dy, (Tsallis Entropy)200

5. Ω5(f) =
1

1 − α
ln

∫∫
fα(x, y) dx dy, (Rényi Entropy).201

Our main contribution here is to find the generic expression for the solu-

tion of these criteria. The main tool is the classical Lagrange multipliers

technique which consists in defining the Lagrangian functional

Lg(f, λ0, λ1, λ2) = Ω(f) + λ0

(
1 −

∫∫
f(x, y)dxdy

)

+

∫
λ1(x)

(
f1(x) −

∫
f(x, y)dy

)
dx

+

∫
λ2(y)

(
f2(y) −

∫
f(x, y)dx

)
dy,

and find its stationnary point which is defined as the solution of the following

system of equations:




∂Lg(f, λ0, λ1, λ2)

∂f
= 0,

∂Lg(f, λ0, λ1, λ2)

∂λi
= 0.

Here, we do not show all the details, but only give the final expression,202

assuming that the integrals converge:203
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1. f̂(x, y) = −1
2 (λ1(x) + λ2(y) + λ0) , ( -Energy )204

2. f̂(x, y) = exp(−λ1(x) − λ2(y) − λ0), (Shannon entropy)205

3. f̂(x, y) =
1

λ1(x) + λ2(y) + λ0
, (Burg entropy)206

4. f̂(x, y) =
1 − α

α
(λ1(x) + λ2(y) + λ0)

1

α−1 , (Tsallis and Renyi entropies).207

Where λ1(x), λ2(y) and λ0 are obtained by replacing these expressions in208

the constraints (24) and solving the resulting system of equations. When209

solving the Lagrangian functional equation which is concave in f, we assume210

that there exists a feasible f > 0 with finite entropy. The results for Tsallis211

and Renyi entropies leads to the same family of distribution depending on212

α due to the monotonicity property of the logarithm function. For the two213

criteria -Energy and Shannon entropy, we can find analytical solutions for214

λ1(x), λ2(y) and λ0. For −Energy, we obtain:215

λ1(x) = −2f1(x) +

∫
λ1(x) dx + 2, λ2(y) = −2f2(y) +

∫
λ2(y) dy + 2216

and λ0 = −2 −

∫
λ1(x) dx −

∫
λ2(y) dy, which finally gives:217

f̂(x, y) = f1(x) + f2(y) − 1. (25)

This is nothing else but the standard Back Projection mechanism (up218

to scale factor and a constant). Hence, the Back projection method can be219

easily interpreted as a minimum norm solution. For the Shannon entropy,220

we get:221

λ1(x) = − ln

(
f1(x)

∫
λ1(x) dx

)
,222

λ2(y) = − ln

(
f2(y)

∫
λ2(y) dy

)
and223
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λ0 = ln

(∫
λ1(x) dx

∫
λ2(y) dy

)
which yields224

f̂(x, y) = f1(x)f2(y). (26)

This is now the MBP we obtained as associate to an independent copula.225

Unfortunately, in the the cases of Burg, Tsallis and Renyi entropies, it is226

not possible to find analytical expressions for λ0, λ1, and λ2 as functions of227

f1 and f2. Consequently a numerical approach is required, see for example228

[28].229

Using equation (22) one can write all entropies in terms of copulas. For

example, if we denote the Shannon entropy by H(x, y) and the copula en-

tropy by Hc(u, v), then :

H(x, y) = H(x) + H(y) + Hc(u, v).

The previous relation shows that the Shannon entropy of the bivariate dis-230

tribution is the sum of the entropies provided by each marginal density and231

the copula entropy. And the extension in the multivariate case is straight-232

forward. Therefore, maximizing the joint entropy, given the marginals, is233

equivalent to maximize the entropy of the copula Hc(u, v). Since we only234

have here a domain constraint -the copula is defined on [0, 1]2-, the Shannon235

Maximum entropy copula is uniform, c(u, v) = 1, and we obtain the MBP236

reconstruction (26). Now, if we look for a Shannon maximum entropy cop-237

ula with an additional correlation constraint-that is we fix the correlation of238

the underlying normalized random variables-,then we end with a Gaussian239
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copula, which in turn, lead us to the CopBP method with a Gaussian copula240

(22). Along these lines, it seems possible to characterize the different fam-241

ilies of copula as maximum entropy solutions, possibly incorporating more242

prior information. More generally, it will also be interesting to characterize243

the copulas corresponding to the Burg/Rényi ME solutions.244

Some simulations are reported Figure 3. The aim of these simulations245

from our copula-tomography package [13] is just to show the link between246

copula in tomography in the case of only two projections. The original 1247

image simulated is a Gaussian and the original 2 image is formed by four248

Gaussians. We performed BP, FBP, MBP and CopBP on these images. We249

observe the MBP and the CopBP, the two projections on the reconstructed250

images match those from the simulated images which are not the cases for251

the BP and the FBP.252

7. Conclusion253

The main contribution of this paper is to find a link between the notion254

of copulas in statistics and X-ray CT for small number of projections. This255

link brings up possible new approaches for image reconstruction in CT. We256

first presented the bivariate copulas and the image reconstruction problem257

in CT. We highlight the connexion between the two problems that consist258

in i) determining a joint bivariate pdf from its two marginals and ii) the259

CT image reconstruction from only two horizontal and vertical projections.260
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We emphasize that in both cases, we have the same inverse problem for261

the determination of a bivariate function (an image) from the line integrals.262

We have indicated the potential of copula-based reconstruction methods,263

introducing the MBP (Multiplicative Back Projection) and CopBP (Copula264

Back Projection) methods. Current work addresses the characterization of265

family of copulas as well as the estimation of copulas parameters in the266

reconstruction process. We also intend to improve the results by accounting267

for more projections in the method, while keeping the copula approach.268
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[10] J. Radon, Über die bestimmung von funktionen durch ihre integralwerte294

längs gewisser mannigfaltigkeiten, Ber. Verh. Säch. Akad. Wiss. Leipzig,295
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