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ABSTRACT. In this paper we address the problem of building convenient criteria to solve linear

and noisy inverse problems of the form y = Ax + n. Our approach is based on the speci�cation of

constraints on the solution x through its belonging to a given convex set C. The solution is chosen

as the mean of the distribution which is the closest to a reference measure � on C with respect to the

Kullback divergence, or cross-entropy. This is therefore called the Maximum Entropy on the Mean

Method (memm). This problem is shown to be equivalent to the convex one x = argminxF(x)

submitted to y = Ax (in the noiseless case). Many classical criteria are found to be particular

solutions with di�erent reference measures �. But except for some measures, these primal criteria

have no explicit expression. Nevertheless, taking advantage of a dual formulation of the problem,

the memm enables us to compute a solution in such cases. This indicates that such criteria could

hardly have been derived without the memm. In order to integrate the presence of additive noise in

the memm scheme, the object and noise are searched simultaneously for in an appropriate convex C0.

The memm then gives a criterion of the form x = argminx F(x) + G(y �Ax), where F and G are

convex, without constraints. The functional G is related to the prior distribution of noise, and may

be used to account for speci�c noise distributions. Using the regularity of the criterion, the sensitivity

of the solution to variations of the data is also derived.

1. Problem statement

In many applications, one often faces the inverse problem y = Ax + n which consists in

estimating a vector x 2 IRN from an indirect and noisy observation vector y. The observation

matrix A is supposed to be known, together with some statistical characteristics of the noise

n. When the observation matrix A is either not regular or ill-conditioned the problem is

ill-posed and one has to complete the data with an a priori knowledge or constraints on the

solution in order to select a physically-acceptable solution. Such information may be given

in the form of the convex constraint

x 2 C; (1)

where C is a convex set. Examples of this situation are plentiful, let us only cite the prob-

lem of imaging positive intensity distributions, which arises in spectral analysis, astronomy,

spectrometry, etc: : : In other speci�c problems, such as crystallography or tomography, lower

and upper bounds on the image are known, and have to be taken into account in the recon-

struction process. Such constraints may be speci�ed by the belonging of the object to the

convex set C (where the bounds ak and bk are given) and include the positivity constraint

as a special case,

C = f x 2 IRN
= xk 2 ]ak; bk[ ; k = 1::Ng: (2)
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2. Methods for solving linear inverse problems

In the case of an ill-posed problem, the generalized inverse solution is unsatisfactory because

of the dramatic ampli�cation of any observation noise. Quadratic regularization makes

possible to get rid of ill-posedness e�ects, but it leads to linear estimates, and therefore

cannot provide any guarantee with respect to the support constraint (2).

Possible answers are given with set theoretic estimation (for a review see [1]) and projec-

tion onto convex sets algorithms. Although good reconstructions can be obtained, they are

often computationally expensive and do not lead to a unique and well-de�ned solution.

Other approaches use regularized criteria, which are usually written as a compound

criterion made of two terms, one which enforces some �delity of the solution to the data, the

other which ensures that some desirable properties are met. Such regularized criteria will be

noted under the generic form

J (x) = F(x) + �G(y �Ax) � � 0: (3)

Many of these regularized criteria may be interpreted in a Bayesian setting. Indeed, if the

functionals �F and x 7! ��G(y�Ax) are respectively a log-prior and a log-likelihood, then

the minimization of J provides the maximum a posteriori (MAP) estimator. However, in a

given problem, the ab initio choice of a good model is a di�cult task, for which there is no

general answer (see [6] for a discussion of the subject). Such situations are encountered when

the only a priori knowledge is a convex constraint such as (1). Nevertheless, useful methods

have been found in those cases: for instance, when reconstructing object with positivity as

the only pre-requisite, several thought processes have lead di�erent authors to the conclusion

that the maximum entropy reconstruction method could be a useful answer. It consists in

the optimization of a regularized criterion of the form (3) with

F(x) =
NX
i=1

fxi log
xi

mi

� xi +mig; (4)

wherem = [m1; m2; : : : ; mN ] is a prior guess. As far as the positivity constraint is concerned,

criteria like (4), built upon logarithmic expressions, ensure positivity and are therefore said

to be \positivity free"; an other well-known example is the \log(x)" or Burg entropy used

in spectral analysis.

The several good properties of the maximum entropy reconstruction method have been

studied by many authors (see axiomatic studies such as [2] or [5]). The memm construction

generalizes in some way certain aforementioned \thought processes," leading to the maximum

entropy reconstruction method (4), in order to exhibit useful regularization functionals for

a large class of convex constraints (1). The obtained regularizing functionals share many

properties of the entropy (4).

3. The Maximum Entropy on the Mean Method

The foundations of the Maximum Entropy on the Mean Method originate from the work

of J. Navaza [10], and some theoretical aspects of the method were further studied by F.

Gamboa and D. Dacunha-Castelle [3]. We have also studied it with a special attention to its

potential applications in signal and image reconstruction and restoration [8]. For the sake
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of simplicity, this paragraph addresses the noiseless problem. Discussion of how to account

for noise will take place in x5.2.

Much emphasis must be put on our only a priori information: the convex constraint of

(2). The memm construction thus begins with the speci�cation of the set C and a reference

measure d�(x) over it. The actual observations y are considered as the mean of a process

x under a probability distribution P de�ned on C (this idea comes from statistical physics

where observations are average values or macrostates). The set C being convex, the mean

EP fxg under P is in C and hence the convex constraint is automatically ful�lled by EP fxg.

3.1. Additional information principle

Since the constraint given by (2) does not lead to a unique distribution P , we have to invoke

some additional information principle. For this purpose, we use the �-entropy K(P; �), or

Kullback-Leibler (K-L) information [7]. This information is de�ned for a reference measure

� and a probability measure P by

K(P; �) =

Z
log

dP

d�
dP (5)

if P is absolutely continuous with respect to � (P � �) and K(P; �) = +1 otherwise.

The distribution P is selected as the minimizer of the �-entropy submitted to the con-

straints \on the mean" AEP fXg = y. In other words, P is the nearest distribution, with

respect to the K-L divergence, to the reference measure � in the set of distributions such

that AEP fXg = y. The maximum entropy on the mean problem then states as follows:

memm problem

8>><
>>:

P̂ = argmin
P

Z
log

dP

d�
(x)dP (x);

such that y = A

Z
xdP (x):

It is well known that the solution, if it exists, belongs to in the exponential family

dP s(x) = exp
n
s
t
x� logZ(s)

o
d�(x); (6)

and, more precisely, that its natural parameter is of the form s = At
� for some �. In (6)

logZ is the log-partition function or the log-Laplace transform of the measure d�(x); this

function will be noted F� in the sequel.

3.2. The dual problem

Using results of duality theory, there is an equality between the optimum value of the previous

problem and the optimum value of its dual counterpart (dual attainment):

Inf
P2Py

K(P; �) = Sup
�2D

�

n
�
t
y �F

�(At
�)
o
; (7)

where Py = fP : AEP fXg = yg is the set of normalized distributions which satisfy the

linear constraint on the mean, and D� is the set f� 2 IRM : Z(At
�) < 1g, which is often

the whole IRM , in which case the dual problem is unconstrained.

Once the dual problem on the right side of (7) is solved, that is the maximization of the

dual functional

D(�) = �ty �F�(At
�); (8)
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yielding an optimum value �̂, one has the expression of the density P̂ = P
A
t
�̂
and can

calculate the reconstructed object x̂ by computing (numerically) the expectation E
P̂
fXg.

But this is not the more e�cient way to compute the solution. Indeed, inside the exponential

family (6) there is a one-to-one mapping between the natural parameter s and the mean of

the associated distribution x(s):

x(s) =
dF�

ds
(s) : (9)

Therefore, the solution x̂ is simply obtained by calculating (9) at the optimal point At
�̂.

Let us emphasize that the dual criterion is by construction a strictly concave functional.

E�cient methods of numerical optimization, such as gradient, conjugate gradient, or second

order methods (Gauss-Newton) can be used to compute the solution. They will use the

gradient of D which is easily calculated to be just y � Ax(At
�). During the algorithm,

the primal-dual relation (9) is used to compute the current reconstruction from the dual

vector �.

3.3. Yet another primal problem

The previous development was done in the space of the dual parameters �. The purpose of

this paragraph is to come back to the natural \object space". We will exhibit a new primal

criterion, which we will call an entropy. This function, not surprisingly, is intimately related

with the previous dual function and the K-L information.

For each x 2 C, consider the memm problem when the constraint is EP fXg = x. We

de�ne F(x) to be the optimum value of the K-L information for this problem

F(x) = Inf
P2Px

K(P; �);

where Px = fP : EP fXg = xg.

As already seen, at the optimum, we have by dual attainment

F(x) = Sup
�2D

�

n
�
t
x�F

�(�)
o
; (10)

The latter equation means that F is the conjugate convex of F� and, as F� is the log-

Laplace transform of �, the Cram�er transform of �. Such transforms appear in various

�elds of statistics and in particular in the Large Deviations theory, which has important

connections with the memm [9]. Properties of Cram�er transforms are listed below [4]:

� F is continuously di�erentiable and strictly convex on C,

� F(x) = +1 for x =2 C and its derivative is in�nite on the boundary of C,

� F(x) � 0 with equality for x =m, the mean value under the reference measure �.

Our original memm problem can now be handled in a di�erent way. If P is a candidate

distribution with mean x, its K-L information with respect � is greater or equal to F(x).

Moreover, this lower bound can be decreased by searching a vector x̂ minimizing F over the

set Cy = fx :Ax = yg. Then the memm problem is reformulated as

Inf
x2Cy

f Inf
P2Px

K(P; �)g:
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If we consider the reconstruction problem in the object space, we only need to solve

x̂ = argmin
x2Cy

F(x): (11)

Note that this problem has the same dual problem than that of (8). In fact, we have

exhibited another primal problem associated to (8), directly in the object space IRN . Its

solution x̂ is the mean of the optimal distribution in the memm problem, and a solution

to our reconstruction problem. This swap between primal problems is referred to as a

\contraction principle" in statistical physics [4]. In this context, functional F appears as a

level-1 entropy, therefore we will simply call it an entropy in the following.

Properties of the Cram�er transform are useful for reconstruction purposes, when hold-

ing the entropy F as the objective function, as in (11). Strict convexity enables a simple

implementation and guarantees the uniqueness of the reconstruction. The second property

shows that any descent method will provide a solution in C, even if the constraint x 2 C is

not speci�ed in the algorithm; this \C-free property", is here an analog of the \positivity

free" property observed in conventional maximum entropy solutions (see above). The last

property shows that F may be considered as a discrepancy measure between x and m. In

the sequel, we give some examples illustrating the di�erent points developed above.

4. A few examples of memm criteria

4.1. Gaussian reference

Our �rst example consists in a problem where no constraint is known on the object, so that

C = IRn. We choose the Gaussian measure N (m;Rx) as our reference measure � on C. A

simple calculus then leads to the Cram�er transform

F(x) = (x�m)tR�1
x (x�m); (12)

which is recognized as a classical quadratic regularizing term.

4.2. The positive case

� Poisson reference and the \Shannon entropy"

Let now C be ]0;+1[, and the reference distribution be a (separable) Poisson law, with

expectationm. Such a prior may correspond to the modeling of the fall of quanta of energy,

following a Poisson process. This modeling may be encountered in astronomy (the speckle-

images of optical interferometry) for instance. The reference measure is then

�(x) =
NY
j=1

�(xj) =
NY
j=1

m

xj
j

xj !
exp(�mj):

The entropy functional F , which measures the distance between any candidate solution x

and the prior mean m is the Cram�er transform of �, and works out to be

F(x) =
NX
j=1

"
xj

mj

log

 
xj

mj

!
+mj � xj

#
;

which is the generalized version of the Shannon entropy.
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� Gamma reference and Itakura-Sa��to discrepancy measure

The presentation of [11] in spectrum analysis happens to be exactly a memm approach

to a well known criterion: the Itakura-Sa��to discrepancy measure.

The periodogram having asymptotically a �
2 distribution with two degrees of freedom,

the corresponding reference measure � over the possible spectra is an exponential law with

mean, i.e. prior spectrumm. Using the Cram�er transform de�nition, one easily obtains the

entropy

F(x) =
NX
j=1

xj

mj

� log

 
xj

mj

!
� 1; (13)

which is the Itakura-Sa��to distortion between s andm. Withm = 1, we measure a distance

to a 
at spectrum, and �nd out the so-called \log(x)", or Burg entropy.
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(a) Test object.
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(c) Reconstruction with a Gaussian refer-

ence measure { no constraint.

Figure 1: this �gure compares di�erent re-

constructions in a simple Fourier synthesis

problem. The test object is in (a), its Fourier

transform and the available data in (b). Then

three reconstructions corresponding to di�er-

ent reference measures of the memm scheme,

and also to di�erent constraint sets, are given.

They show the improvement with the reduc-

tion of the set of admissible solutions.
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(b) Fourier transform of the object and (o)

available data.
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(d) Reconstruction with a Poisson reference

{ positivity constraint.
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(e) Reconstruction with a uniform 0-2 mea-

sure { x 2 [0; 2]N .

4.3. The bounded case

We consider here the case when C has the general form of Eq. 2. Such constraints may

be useful in many applied problems where the object is a priori known to lie between two

bounds (tomography, �lter design, crystallography).
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Several reference measures can be used on the convex C. A natural idea is indeed to use a

product of uniform measures over each interval ]aj ; bj[ : d�(x) =
NN

j=1
1

bj�aj
1]aj;bj [(xj) dxj :

The calculus of the Cram�er transform leads to implicit equations, therefore we have no

analytic expression for F . Nevertheless the primal-dual relation can be computed

xj = �
1

sj

+
bje

bjsj � aje
ajsj

e
bjsj � e

ajsj
with sj = [At

�]j , 1 � j � N

and the convex problem Inf
x
F(x) subject to y = Ax, where F is not explicit, can still be

solved using its dual formulation (8) together with the aforementioned primal-dual relation.

Other measures could be used in this case. The case of a Bernoulli measures product d�(x) =NN
j=1f�j�(xj � aj) + (1� �j)�(xj � bj)g (where � denotes the Dirac measure) is derived in

a referenced work [9] and leads to a generalized version of Fermi-Dirac entropies.

Figure 1 compares reconstructions obtained with di�erent entropies presented above.

5. Taking noise into account

So far memm criteria have been derived from the maximization of the �-entropy submitted

to an exact constraint. Any observation noise will ruin our exact constraint, and as a con-

sequence the two (primal-dual) formulations of the memm problem. The exact constraint

was useful in interpreting observations as a linear transform of a mean, then enabling us

to exhibit the discrepancy measure F . Because of the good properties of F , we will still

consider the unknown object x as a mean, in order to use its entropy F(x), but we have to

modify the procedure.

5.1. The �2 constraint

A classical way to account for noise is to construct a con�dence region about the expected

value of some statistic. For Gaussian noise, one usually uses the �2 constraint jjy�Axjj2 �

�, where � is some constant. Then the problem becomes the minimization of F submitted

to the �2 constraint. There always exists a positive parameter � (in fact it is a Lagrange

parameter corresponding to the �2 constraint) such that the previous problem reduces to

Inf
x
fF(x) + �jjy�Axjj

2
g: (14)

5.2. Accounting for general noise statistic within the memm procedure

Thanks to a speci�c entropy function, more complicated penalizations than (14) can be

performed in order to account for non-Gaussian noises. Such entropies can be derived directly

in the same memm axiomatic approach as in the noiseless case. To this end, we only need to

introduce an extended object ~x = [x; n], and consider the relation y = ~A~x, with ~A = [A; 1].

The vector ~x evolves in the convex ~C of IRN+M , which separates on a product of the usual

C and of B, ~C = C � B, where B is the convex hull of the state space of the noise vector n.

We then use a reference measure � over the noise set. For instance, in the case of a

Gaussian noise we take B = IRM and a centered Gaussian law with covariance matrix R� as

�. With a Poisson noise we take B = IRM
+ and a Poisson reference measure �.

Now we can de�ne a new entropy functional by using a reference measure ~� on ~C. If �

is the distribution of the noise, � our object reference measure on C, and if we assume that
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the object and noise are independent, we obtain ~� = � 
 �. The entropy function we are

looking for is then the Cram�er transform of ~� which is simply

F~�(~x) = F�(x) + F�(n):

Estimation of the extended object is conducted through a constrained minimization of

F~�(~x), the constraint being y = ~A~x = Ax + n. Therefore it reduces to the unconstrained

minimization of the compound criterion

J (x) = F~�([x;y�Ax]
t) = F�(x) + F�(y �Ax): (15)

A dual approach is again useful, in particular if F� or F� or both are not explicit. It is easy

to show that the dual criterion is

~D(�) = �ty � F�

�(A
t
�)�F�

� (�):

Having solved the dual problem, we come back to the primal solution by the primal-dual

relation which is, thanks to the separability of the log-Laplace transform of ~�, the same as

in the noiseless case:

x(At
�) =

dF�

�

ds
(At

�):
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(a) Original object.
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(b) Available data with Poisson noise.
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(c) Reconstruction with Poisson and Gaus-

sian reference measures.
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(d) Reconstruction with Poisson and Pois-

son reference measures.

Figure 2: Di�erent accounts for noise. The original object (a) is con-

volved and corrupted by Poisson noise (b). Twenty di�erent realizations

of the noise are represented. Reconstructions are in (c) and (d): recon-

structions in (c), where the noise is considered as Gaussian are outper-

formed by reconstructions in (d), where the real nature of the noise is

accounted for.

We are then able to account for speci�c noise distributions, without loss in the nice

properties of our criteria: the global criterion of (15) is always convex, and the convex
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constraint is automatically satis�ed. Concerning the case of a Gaussian noise, it can easily

be checked using result of (12), that a Gaussian reference measure for the noise term leads

exactly to the problem of (14), which was obtained by statistical considerations.

5.3. Sensitivity of the reconstruction

Within the limit of small variations, we can also study the stability of the reconstruction

with a sensitivity analysis. This enables to study the importance of a given data point on the

reconstruction and quantify the amount of change resulting from a perturbation of the data.

The sensitivity analysis is based on the determination of the derivative dx/dy. Although an

expression can be obtained in the direct domain, the derivation is done in the dual domain,

because the primal functions may be not explicit.

The stationary point � of the dual function ~D(�) veri�es

y = Ax
�
+ F�

0

� (�):

Let us noteF�
00

� andF�
00

� the diagonal matrix of the second derivatives F�
00

� (�) and F�
00

� (At
�).

Then, we have

dy =
@y

@�
d� =

�
A
@x

�

@�
+F�

00

�

�
d�:

With the primal-dual relation x
�
= F�

0

� (At
�), the partial derivative of x

�
with respect to

� is simply F�
00

� A
t. Thus

dy = [AF�
00

� A
t +F�

00

� ]d�:

Using dx
�
=

@x
�

@�
d�, one gets �nally the relation

dx
�
=Hdy = F�

00

� A
t
h
AF

�
00

� A
t +F�

00

�

i
�1

dy:

With Efdydytg = Ry , the noise covariance matrix, we use the \sensitivity matrix"HRyH
t

whose (square root) diagonal terms may serve as \sensitivity bars".
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(a) Sensitivity bars.
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(b) Monte Carlo study and sensitivity anal-

ysis.

Figure 3: Sensitivity of the reconstruction. Sensitivity \bars" are plot-

ted in (a) and (b). In (b), we have reported 20 reconstructions of a Monte

Carlo study. The variations of reconstructions are in good agreement

with the sensitivity analysis.
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6. Conclusion

It is always possible to modify our reference measures to balance the two terms of the global

criterion (15) which should therefore be written as

J (x) = F�(x) + �F�(y �Ax);

where � is a regularization parameter. The Maximum Entropy on the Mean procedure

enables us to �nd the generic form of regularized criteria, and to solve the problem even if

primal criteria F� and F� have no analytical expression.

Such an approach provides a new general framework for the interpretation and deriva-

tion of these criteria. Many other criteria as those presented in x4 have been derived [9].

In particular, reference measures de�ned as mixture of distributions (Gaussian, Gamma)

have been successfully used for the reconstruction of blurred and noisy sparse spike trains.

Poissonized sums of random variables also lead to interesting regularized procedure in con-

nection with the general class of Bregman divergences. Work is also in progress concerning

the quanti�cation of the quality of memm estimates, the links with the Bayesian approach,

especially with correlated a priori models such as Gibbs random �elds.
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