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ABSTRACT

The subject of this communication is the restoration

of spiky sequences distorted by a linear system and

corrupted by an additive noise.

A (now) classical way of coping with this prob-

lem is to use a Bayesian approach with a Bernoulli-

Gaussian (bg) prior model of the sequence. We will re-

�ne this method using a Bernoulli-Gaussian plus Gaus-

sian (bgg) prior model. This estimation method re-

quires maximization of a posterior probability distri-

bution, which cannot be performed optimally.

Thus we propose here a new non-Bayesian estima-

tion scheme, derived from the Kullback-Leibler in-

formation or cross-entropy. This quite general method,

called the Maximum Entropy on the Mean Method

(memm) in [1] and [2], is �rmly based on convex analy-

sis and yields a unique solution which can be e�ciently

calculated in practice, and which is, in this sense, truly

optimal.

As a conclusion, we present results obtained with

both methods on a synthetic case.

1. PROBLEM STATEMENT

In this communication, we address the problem of restor-

ing spiky sequences x distorted by a linear system H

and corrupted by an additive noise n. Let z be the

indirect and noisy observation vector

z =Hx+ n: (1)

The linear system and noise distribution are supposed

to be known. Since matrixH is generally ill-conditioned,

one has to complete the data with an a priori knowl-

edge on the solution, so as to select a physically accept-

able one.

When restoring spiky sequences, one is awaiting a

mixture of large amplitude re
ectors { modeling for ex-

ample interfaces between layers of a strati�ed medium

{ and small amplitude re
ectors { modeling inhomo-

geneities inside layers. A convenient way to account for

this knowledge is to use a stochastic modeling, which

could be a mixture of large variance zero-mean Gaus-

sian variables and of small amplitude zero-mean Gaus-

sian variables. This is the so-called bgg distribution.

The bgg model can be summarized by :

8>>>>>>>><
>>>>>>>>:

y = (q;x) : joint white process;

q[k] : Bernoulli random variable;�
P (q[k] = 1) = �;

P (q[k] = 0) = 1� �;

x[k] : Gaussian random variable given q[k];�
x[k] � N (0; q[k]rl + (1� q[k])rs) ;

with rl > rs:

In the sequel, we will use this model to solve prob-

lem (1), �rst with a classical non-optimal Bayesian

method and then with a new optimal entropic one.

2. A CLASSICAL BAYESIAN

RESOLUTION METHOD

The Bayesian approach of the problem with a bg prior

has been introduced by Kormylo andMendel in the

late 70's [3] : they could only account for strictly ho-

mogeneous layers (rs = 0). Mendel suggested an ex-

tension of their method relying on the aforementioned

bgg prior.

An intuitive Bayesian estimator of the sequence y

would be the one given by the maximization of the joint

posterior likelihood :

(q̂; x̂) = argmax
(q;x)

p(zjx; I)p(xjq; I)P (qjI)

where I stands for prior informations such as matrix

H and noise statistics. The noise will be here mod-

eled as the realization of a white Gaussian zero-mean



Random Vector (rv) with variance rn. This estima-

tor usually gives unsatisfying reconstructions since too

few large amplitude re
ectors are detected, especially

when rs and rl are of di�erent orders of magnitude.

The limit case when rs = 0 corresponds to a bg prior,

whose probability measure is known to be degenerated.

In this case, the problem has been solved in [4] and [5]

by using another Bayesian estimator. Therefore, our

estimation algorithm will highly be based on those ref-

erences. The selected estimator ŷ is :8>><
>>:

ŷ = (q̂; x̂);

q̂ = argmaxq P (qjz; I)

= argmaxq p(zjq; I)P (qjI);

x̂ = argmaxx p(xjq̂; z; I):

We recognize here a detection step yielding q̂, followed

by an estimation step yielding x̂. The detection step

leads to maximizing the posterior log-likelihood L :8<
:
q̂ = argmaxq L(q);

L(q) = � log(det(B(q)) � zt(B(q))�1z

�2 (
P

k q[k]) log
1��
�
;

where 8>><
>>:

B(q) = E[zzt]

= H�x(q)H
t + rnI ;

�x(q) = rsI + (rl � rs)Q;

Q = diag(q[k]):

Knowing z and q, x is Gaussian since we assume that

the noise follows a Gaussian law. Hence x̂ is a linear

function of the observations, which may be written :

x̂ = �x(q̂)H
t (B(q̂))

�1
z:

Nevertheless, detection of q requires evaluation of cri-

terion L for 2n possible values of q, which is computa-

tionally intractable for realistic values of the dimension

n of vector x. To estimate q, Kormylo and Mendel

introduced the Single Most Likely Replacement algo-

rithm in the bg case [3], which has also been used in

[4] and [5]. Knowing the current estimate q0, L is com-

puted on a set of neighboring sequences qk which di�er

from q0 at a location k only. The starting point of the

next iteration will be the one minimizing L among this

neighbors. This method is sub-optimal since it only

guarantees convergence to a local optimum.

To perform the optimization step, we can take ad-

vantage of a simple relation linking L(q0) and L(qk).

Since the bgg model can also be considered as a bg

model with colored noise, we can derive this relation

from [5], which gives :

L(qk) = L(q0) +
1

�k

w
t
0vkv

t
kw0

� log("k(rl � rs)�k)� 2"k log
1� �

�

;

where

8>>>><
>>>>:

A0 = H
t(B(q0))

�1
H ;

wk = H
t(B(qk))

�1
z;

vk : k
th vector of the canonical basis;

"k = �1(whether we add or remove a re
ector);

�k = "k
rl�rs

+ vtkA0vk:

Care has been taken to minimize the computational

burden, which is not greater than O(n2) multiplica-

tions.

3. A NEW OPTIMAL ENTROPIC

ESTIMATE

For the sake of simplicity, let us �rst study the noise-

less problem. Our observation equation then reduces to

z = Hx. The noisy case only needs a simple modi�-

cation of the basic scheme.

An analogy can be made with statistical mechanics

so as to derive the estimator introduced by the pio-

neering work of Navaza [6]. In this framework, x is

supposed to be the macrostate of some physical sys-

tem. The macrostate is considered as being the av-

erage value of microstates, such as velocities of parti-

cles in a discrete gas. In a statistical point of view,

those microstates are the realisation of a rv u under

a given law �. Having performed no observation, the

bgg distribution is a suitable measure � related to a

spiky signal. Performing an observation corresponds

to observing the mean of a realization of the underly-

ing microstates. Those microstates yield an empirical

distribution p of the rv u. We can state this as :

�
x = Ep[u];

z = Hx:
(2)

Moreover, every empirical distribution has a given prob-

ability of occurence. This probability depends on � and

will be written as Q(pj�).

Given an observation, the most likely underlying

macrostate is then the average value of the empirical

distribution which is the most likely to occur. We can

state this as :8<
:
x̂ = Ep̂[u];

z = Hx̂;

p̂ = argmaxpQ(pj�):

Since the empirical distributions follow a Large Devia-

tions Principle, an exponential equivalent of our prob-

ability of occurence Q(pj�), assuming a large number

m of microstates, is :

Q(pj�) � exp(�mK(p; �))



where

K(p; �) =

Z
log

dp

d�

dp

is the Kullback distance between distributions p and

�, and is called the rate function in the large deviations

theory (see [7] for developments on statistical mechan-

ics and large deviations).

We have obtained a new formulation of the prob-

lem : 8<
:

p̂ = argminpK(p; �);

x̂ = Ep̂[u];

z = Hx̂:

In other words, we now have to �nd the distribution

closest to � according to the Kullback distance, and

whose mean satis�es the observations, i.e. z =HEp̂[u].

This is the less informative probabilitymeasure with re-

spect to distribution � and satisfying the constraints.

The chosen estimator is the mean under that probabil-

ity measure.

We face here a minimization problem under con-

straints, which is cumbersome to handle. A classi-

cal way of coping with such a di�culty is to use La-

grangians and duality theory [8] and to introduce an

additional vector �, leading to an unconstrained prob-

lem.

The seeked distribution p̂ belongs to a family of

distributions parameterized by �

dp�(u) = exp
�
�
t
Hu � logZ(�)

�
d�(u):

logZ(�) is the log-partition function, or the log-

Laplace transform of the measure d�(u), and is given

by :

logZ(�) = log

�Z
exp(�t

Hu)d�(u)

�
: (3)

The �rst optimization problem is then equivalent to the

following dual and unconstrained problem :

(dual)

8<
:
�̂ = argmax�D(�);

D(�) = �
t
z � logZ(�);

x̂ = Ep�̂
[u]:

Given distribution p�̂, one has to derive its mean value.

This is achieved using the so-called primal-dual rela-

tion :

Ep�̂
[u] =

@ logZ(�)

@(Ht
�)

����
�=�̂

(4)

which no longer explicitely depends on p�̂.

Actually, computation of p�̂ appears to be an in-

termediary step which can be omitted using the primal

criterion F de�ned by :

F(x) = min
x=Ep [u]

K(p; �):

Navaza, Le Besnerais and Bercher have shown

that an equivalent formulation of the previous prob-

lem was :

(primal) x̂ = arg min
x2Cz

F(x)

where Cz = fxjz = Hxg, since, as a result of duality

theory :

min
x2Cz

F(x) = sup
�

D(�):

Nevertheless, the primal problem is constrained and

F has no explicit expression in the case considered

here. Though F has a nice convexity property, com-

putation is practically performed using the dual un-

constrained formulation : D(�) is a convex function

of � and its maximization, using classical optimiza-

tion methods such as gradient or conjugate-gradient,

yields a unique solution. The estimate is optimal be-

cause of the convexity ofD(�). Notice that sup
�
D(�),

viewed as a function of z, is the Legendre transform

of logZ(�) and also the Cram�er transform of the ref-

erence measure d�(u).

Let ki be : ki =
�
H

t
�

�
[i]. In practice, resolution

of the memm requires �ve steps :

1. Choice of the reference measure d� accounting for

our prior information on the sequence [2]. In the

case of spiky sequences, we used :

�(x) =
Q

i �i(xi);

�i(xi) = �p
2�rl

exp(�
x2i
2rl

) + 1��p
2�rs

exp(�
x2i
2rs

):

2. Analytical computation of the log-partition func-

tion logZ(�) using (3), from which we derive the

dual function D(�) :

D(�) = �
t
z

�

P
i log

�
� exp

�
rl
2
k
2
i

�
+ (1� �) exp

�
rs
2
k
2
i

��
:

3. Analytical computation of the primal-dual rela-

tion (4) :

�
Ep�̂

[u]
�
[i] =

�rlki exp(
rl
2
k2i )+(1��)rski exp( rs2 k2i )

� exp(
rl
2
k2
i )+(1��) exp( rs2 k2

i )

4. Numerical computation of �̂ = argmax�D(�).

5. Numerical computation of our memm estimator

of the sequence, as Ep�̂
[u]:

Up to this point, we merely considered the noiseless

problem. How can we account for the noise ? Let us

introduce an extended object ~x = [ xt nt ]
t
. If we let

~H be the corresponding extended matrix [H Id ], the

noisy problem can now be written as z = ~H~x and the



memm still applies to the extended object. The refer-

ence measure is now : ~�(~x) = �1(x)
 �2(n), where �2
is a Gaussian law of variance rn in the case considered

here. The new dual function is :

~
D(�) = D(�)�

1

2
rn�

t
�:

4. SIMULATION RESULTS AND

COMPARISONS

In this section, we present some simulation results. We

convolved the so-calledMendel sequence either with a

Kramer or a Ricker wavelet with a 7 dB snr, which

are realistic conditions.

The entropic method provides outstanding recon-

structions with theKramer wavelet. With the Ricker

wavelet, reconstructions obtained with the Bayesian

method are of better quality than entropic ones on this

synthetic example because we have fewer non-detections

and because the reconstructed signal is more spiky.

Nevertheless, Bayesian reconstruction often fails for

actual signals because (i) of a lack of robustness with

respect to the bgg modeling and (ii) a quick degrada-

tion of the detection step with low snr values.

We have good reasons to think that the 
exibility

of the memm introduced by our general form of prior

should improve the reconstruction. In the memm, the

absence of any comparison to a threshold as in the de-

tection step of the Bayesian method should improve

the robustness with respect to noise. Work is currently

in progress to compare both approaches on actual data

measured either in re
ection seismology or ultrasound

imaging.
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