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Minimization problems soluti.ons of the .underlying diff?rential equation can be expre§s§d in terms of Whittaker
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Differential equations tions and investigate their behavior. We also characterize the behavior of the minimum
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1. Introduction

Importance of Fisher information as a measure of the information in a distribution is well known. It has many implica-
tions in estimation theory, as exemplified by the Cramér-Rao bound which is a fundamental limit on the variance of an esti-
mator. Recent applications for computing performance bounds can be found in [2,35]. It is used as a method of inference and
understanding in statistical physics and biology, as promoted by Frieden [10-12]. It is also used as a tool for characterizing
complex signals or systems, [17,20,30] with applications, e.g. in geophysics [25,23,3,16], in biology [9], in reconstruction
[5,6,21] or in signal processing [38,37,29]. Other applications are in random censoring [26], hypothesis testing [19], classi-
fication [8]. In robust estimation, minimization of Fisher information has been originally considered by Huber [15], and in the
case of scale and location parameters in a Kolmogorov neighborhood of a parent distribution in [33,34]. Fisher information
for orthogonal polynomials and special functions have been studied in [24,36]. Connections with the differential equations of
Physics have been explored in [11]. It is also interesting to mention that Fisher information associated to a distribution ap-
pears in quantum physics under the name of Weiszdcker energy; in this setting, several inequalities for the Fisher informa-
tion are derived in [22].

It is well known that the distribution with a fixed variance that minimizes the Fisher information on R is the standard
gaussian distribution. However, there are many situations where the variables at hand are known to belong to some subset
of R. For instance, the random variable may be known, on physical grounds, to have only non negative outcomes, e.g. the
variable represents an energy. Variables may also be known to have a distribution with a support restricted to a given inter-
val: this is the case of normalized variables or of the measurements obtained from a physical device with a (necessarily)

* Corresponding author.
E-mail addresses: jf.bercher@esiee.fr (J.-F. Bercher), vignat@univ-mlv.fr (C. Vignat).

0020-0255/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/.ins.2009.07.013


http://dx.doi.org/10.1016/j.ins.2009.07.013
mailto:jf.bercher@esiee.fr
mailto:vignat@univ-mlv.fr
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

J.-F. Bercher, C. Vignat/Information Sciences 179 (2009) 3832-3842 3833

finite output range. In such cases, a model of the data probability distribution can be defined by the distribution compatible
with the constraints extracted from the data with minimum (Fisher) information. This idea, advocated by Frieden and others,
is reminiscent of the idea of maximum entropy distributions, when the measure of information considered is the Fisher
information. By the Cramér-Rao bound, the Fisher information serves as a benchmark for estimators.

In the case of the estimation of a location parameter, the distributions with minimum Fisher information correspond to
the most difficult estimation cases, and thus it is interesting to look for these distributions. This problem has been considered
in the important paper [28], which reading has motivated the present work. This paper presents general results and
characterizations of the solution to the minimization of Fisher information on a compact support, subject to a variance con-
straint. Here, we give the explicit closed-form expressions of the solutions, characterize their behavior and propose alternate
simpler proofs. We also extend the results to the case of distributions with support confined to the positive half line (and of
course the case of any other semi-infinite support as a straightforward consequence).

Let f denote the probability density of a random variable X. The Fisher information (with respect to a translation param-
eter) is defined as

I[f]:/y(%)zf(x)dx:/q(%):%dx? (1)

where & = Supplf] denotes the support of the density, f(x) is supposed differentiable and both f(x) and its derivative f’(x) are
square integrable on .. We note 2 the set of functions that verify these hypotheses. It is known [7] that the Fisher informa-
tion is a strictly convex function of the distribution, that is: for f(x),g(x), and with 1 € (0,1), then

I + (1 =g < Mf] + (1 = DIjg]. (2)
We are here interested in classifying distributions with a given variance, and consider the variational problem
I(0%) = irflf{l[ﬂ :Supplf] =, f € 2 and Varlf] = %} 3)

which consists in finding a distribution with minimum Fisher information on the set of all distributions with support % and a
fixed variance g2. The value of the minimum Fisher information obtained for a given variance g2 is denoted I(¢?) - the use of
the square brackets and parenthesis distinguishes between the functionals of the probability distributions and the function-
als of the variance. Although I[f] is a convex functional, the set defined by the constraint Var|f] = 2 is not convex, so that
uniqueness of the solution is not guaranteed. For instance, on R, the normal distribution minimizes Fisher information in
the set of distributions on R with a given variance, but in fact irrespectively of the value of the mean: all normal distributions,
whatever their mean, are equivalent solutions. We will obtain in the following that solutions on R" or on an interval are in
fact unique.

In Section 2 we give the differential equation that is associated with the problem of minimization of Fisher information,
and then we underline its relationship with known differential equations. So doing, we exhibit some explicit expressions of
the solutions, in terms of Whittaker and parabolic cylinder functions. Then, we examine two particular cases. First, in Section
4 we characterize the solutions with positive support, the behavior of the minimum Fisher information with respect to the
variance, and show that the solution is unique and turns out to be a chi distribution. Second, in Section 5 where the support
is restricted to an interval, we give the expression of the unique solution to the problem and we study the general behavior of
the minimum Fisher information with respect to the variance. Finally, we give the expression of the probability density with
minimum Fisher information among all distributions with finite variance defined on an interval.

2. The differential equation associated with the minimization of Fisher information

In the following, it is convenient to introduce the transformation f(x) = u(x)? and to work with u(x) instead of f(x). With
this notation, the Fisher information becomes

If] = 4 / 1 (x)2dx, (4)
S
where v/(x) denotes the first order derivative of u(x). The variational problem (3) can be restated as follows:

I(0%) = u111121€f9 {4 /q ' (x)%dx : Lu(x)zdx =1 and Varju?] = 02}. (5)

The problem above can also be completed by some additional conditions on the boundaries of the domain: for instance,
when % = [0: +o00) we need u(+o00) =0 so as to ensure a proper integrable density. At the left endpoint, we shall ensure
continuity and set u(0) = 0 in order to keep the Fisher information finite. Indeed, the Fisher information associated with a
distribution is +o0o when the distribution is not continuous on the domain .%. Similarly, when the support .# is restricted
to ¥ = [-1, 1], and the density is set to 0 outside of this domain, we shall take u(1) = u(—1) = 0 in order to ensure continuity
at these boundary points.
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The Lagrangian functional associated with the problem (5) is

L(u;o, B) = // u'(x)2dx + zx(// u(x)*dx — 1) + ﬁ</m(x — w’u(x)*dx — 62>, (6)

where o and f are the Lagrange parameters associated with the normalization and variance constraints respectively. The
mean is denoted by p. The minimum of the Lagrangian functional is obtained by standard calculus of variations [13] which
asserts that a minimizer of (6) is necessary a solution of the Euler-Lagrange equation

d oL oL
which leads to
W (x) — o+ Bx — p)*)ulx) = 0. (8)
Of course, with the simple change of variable z = x — y, the differential equation reduces to
u'(z) — (o + pz*)u(z) = 0 9)

which is a parabolic differential equation. Interestingly, the minimum Fisher information can be written in terms of the con-
straints and of the Lagrange parameters associated to these constraints.

Proposition 1. The minimum Fisher information in (5) can be expressed as

—‘111(0—2) = o+ B> (10)

with u(a) = u(b) = 0 and where a and b denote the left and right endpoints of the support .

Note that the Lagrange parameters are (complicated) functions of the constraints, so that the right hand side of (10) is not
an affine function in g2.

Proof. By integration by parts,

b
7%1(02) = 7/ U (x)%dx = f[u(x)u’(x)]z +/ u(x)u”(x)dx. (11
4 a
Using the boundary conditions and the differential Eq. (8), we then obtain
1 b
—Zuf):/ka+mx—mﬂMMMx (12)

which reduces to (10) taking into account the values of the constraints. O

3. Solutions to the differential equation

Let us consider the parabolic differential Eq. (9). Using the change of variable x = 1/2+/pz, together with the substitution
d(x) = ((2\/_ )’7x) the differential equation becomes

" l
d"(x) + <_7_4_1x )d(x)fo (13)
which is the Weber differential equation, whose standard form is
d'(x) + <v+%—%x2>d(x) =0. (14)

Here we simply have v = —a/2,/(b) — 1/2. The solutions of the Weber equation can be expressed as a linear combination of
the parabolic cylinder function D, (x) and D_,_;(ix) [32]:

d(x) = ¢1Dy(x) + c2D_y-1(ix) (15)

But the Weber equation above can also be converted into the Whittaker equation using the substitution d(x) = %w(%) and
z = x?/2, which leads to

W(2) + {é’?ﬂgl/z —ﬂw(z) (16)

that has the form of the Whittaker differential equation

W'(2) + {]/42 w +27%}W(z)70 17)
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with 1 =v/2 + 1/4 and u = 1/4. But the Whittaker differential equation can also be obtained directly from the initial differ-
ential Eq. (9) with the substitution u(z) = %W(%) and with x = £z2/2. Then, one readily obtains

/! 3 o ﬁ _
w'(x) + {@72—@(75—2}W(x)_0, (18)
which reduces to the Whittaker differential Eq. (17) with ¢ = 2y/B,4 = ——%-, and p = 1. The general solutions of the Whit-

/5
taker differential equation can be expressed in terms of the two linearly independent Whittaker functions M, ,(z) and
M;,_.(z), or with the help of the Whittaker W, ,(z) function defined by

-2 2
W, ,(2) = %MW (2) + %ML,N) (19)

for 2m ¢ N. In these expressions, the Whittaker M, ,(z) function can be expressed as a simple function of the confluent hyper-
geometric function, or Kummer function, M (3 + 2 — i, 1 + 24,2) according to [1, Eq. 13.1.32]

M, u(z) = 27e5M G + A=, 1+ 24 z) : (20)
Since the Kummer function has an exact series representation, we also have
FHA- W)
M, — zithet p n 21
/.~,U(Z) zrze 2211!(2/1—1—1)”2’ ( )

where (), denotes the Pochhammer symbol. As far as the parabolic cylinder function is concerned, it can also be written as a
Whittaker function [32, p. 347]:
1o 1
Dy(x) = 22"%22W, <§zz>. (22)
According to this discussion and the relationships between parabolic cylinder functions, Whittaker M and W functions, we
find that the solutions of the differential equation associated with the problem of minimum Fisher information can be ex-
pressed as various equivalent linear combinations of the functions

D ., ,((2@)%) and Di,%<(2\/ﬁ)%iz>,

— o
2\p 2 25

or

lM7L_<\//7322), lM7L71<\/ﬁzz), and %W?L_l(\/ﬁf)

ﬂ 4\/?‘1' ﬁ 4/p 4 4,/p4

Some equivalent expressions of the solutions are given below

uz) =ciD . ((2@)%7.) + czD__%(<2\/B>%iz> (23)

Wi 2 v
A 1 2 / 1 2
_— ﬁM—ﬁﬁ—%(ﬁz ) +G My (\/Bz ) (24)
Al 1 2 /1 1 2
= 721\/174%}1(\/& ) + czﬁw,ﬁ%(\/ﬁz ) (25)

In these formulas, the values of the constants in the linear combinations will be determined according to auxiliary con-
straints, e.g. the boundary values. We now turn to the characterization of solutions on R" and then on an interval.

4. Solutions defined on the positive real line

We consider the expression of the solution in terms of the parabolic cylinder functions, as given in (23). A first point is to
check that the solution is bounded on R*. Since the Weber equation has only one irregular singularity at z = +oo, it is suf-
ficient to examine the behavior of the solution for z — +oco. The asymptotic expansion of the Weber function D,(z), with
argz < 3m/4 is [32, p. 347],[1, Eq. 19.8.1]:

Dy(z) ~ e*zltzzz‘(l B vv—-1) n yv-1)(v-2)(v-3) o ) 26)

222 24z4

For z — +o0, we see at once from the asymptotic expansion that D,(z) — 0. Replacing v by —v — 1 and z by iz, we can also
observe that D_, 4 (iz) tends to infinity when z — +oo. Therefore, since the solution must correspond to a proper integrable
density, the second parabolic cylinder function in (23) must be discarded, with ¢, = 0, and the solution becomes
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D o

L((2vE)?
has(2) = (@P) @)

<_ ) (D,ZLW%<(2\/F) z))zdz>é

where the denominator has been introduced in order to ensure the normalization of the probability density f(z) = u(z)*.
As a consequence of the simple form obtained above, it is possible to characterize the general behavior of the minimum
Fisher information as a function of the variance. This is given by the following

ol

Proposition 2. The Fisher information of the minimum information probability density with positive support and fixed variance
o2, corresponding to the solution (27), verifies

Ky
=2
where v = —a/2\/B—1/2 and K, is a constant.

1(0?) (28)

Proof. Letv = —o/2\/B—1/2 and ¢ = 2+/B, and consider v fixed. Then, ¢ acts as a scaling factor: more precisely, denoting V, :
the variance associated with the solution with parameters v and ¢, we readily have V, ; = %VM andIl,; = ¢l 1, where [, : is the
Fisher information. Therefore, the product I, :V,: =1,,V,; does not depend on ¢ and

_ Iv.l VU,]

I, -
V,C Vv,i

Moreover, from the equality V, . =1V, ; and the fact that V, ; > 0, we deduce that the function é¢—V, . maps R* to R* so that

it is always possible to find a value ¢ such that V, . = ¢?; thus, the Fisher information I,(¢?) of the probability density asso-
ciated with the solution u(z) in (27) follows the Eq. (28), with K, =1,,V,;. O

Let v* be the value that minimizes I,(a?). For that value and any distribution f on R™ with same variance 62, we always
have

Ky

If] = In(0%) =,

(29)
which refines the Cramér-Rao inequality. We will check below that K,- is of course bigger than one.

Actually, we know that the Fisher information is infinite in the case of a non differentiable density. It is thus important
here to ensure continuity and differentiability at the origin. In order to ensure that the Fisher information of the probability
distribution f(x) = u?(x) remains finite, we need to impose u(0) = 0. This implies a condition on v so that D,(0) = 0. It is easy
to check that

VT

D\y(O) = w .

(30)

Therefore, D,(0) = O ifand only if I'(} — 1v) — +o0, that is if and only if v is an odd positive integer. In such a case, the Weber
functions can also be expressed in terms of Hermite polynomials H,(x):
Dy(x) = 2 %e TH, (). (31)

Then, the determination of the optimum value v* of v such that I,(¢?) is minimum amounts to minimize K, with v integer.
This leads to the following result.

Proposition 3. For a given variance o2, the distribution on R* which minimizes the Fisher information is obtained for v = 1, and

1S
fx) = \/%f%xz exp <f %‘2> (32)

which is the chi-distribution with three degrees of freedom, and where the parameter ¢ is given by ¢ = (3 — &) /a2, Its Fisher infor-
mation, according to (45), is I ; = 3¢ Then the minimum Fisher-variance product is Ky =9 — 24/m ~ 1.3606.

Proof. In the present case, it is possible to obtain closed-form formulas for the variance and information associated with
(27), even for non integer values of v.

The following relationships, which can be derived from integral representations of parabolic cylinder functions, see [31,
6.2] are useful:

d

ax2r®) = (=1/2)xDy(x) + vDy-1(x) (33)

= (1/2)xDy(x) — Dy;1(x) (34)
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Adding the two equalities and taking the square, we have

d 2
4 (&D" (x)) = 12D, _1(X)*> — 2VDy_1(X)Dy41(X) + Dy41 (X)°. (35)
Subtracting the Eq. (33) and (34), we obtain
XDy (X) = D1 (X) — VDy_1 (%), (36)
from which we deduce
XD, (X)* = Dy,1 (X)Dy(X) — VDy_1 (X)Dy (X), (37)
XD, (%)% = D1 (%)% — 2VD,aq (X)Dy_1 (%) + V2D, _1 (%)%, (38)

The second ingredient of the calculation are the formulas [14, Eqs. 7.711.2 and 7.711.3], from which we define the functional
S(p,v):
nz[/H»VJr] »1

e 1
S = | DU 08 = | g T g >

for u=#v, and with

+00 Wl_1y) _y(_1
S(v,v) = / D, (x)%dx = m}2 % G=5v) = ¥(=3v) (40)
0 I(=v)
where ¥(x) is the digamma function. When p or v are integers, these formulas reduce to
n22p+%k+% 1
S2p,2p+k)=-— 41
P2 = R p - 1K) )
2p+3k+3 1
S2p+1,2p+1+k) = 42
| e )
!
and S(m,m) = (2n)%% 43)

So doing, using the expression of the solution (27), the definition of the Fisher information (4), equality (35) and the defini-
tions (39) and (40), we obtain the expression

L= ¢SV —1,v=1) =2vS(v = 1,v + 1) + S(v + 1, v + 1)) /S(v, V), (44)

which reduces to the very simple expression
Ime = (2m+1)¢ (45)

in the integer case. Let us mention that a similar expression is reported in [36] for the case of Hermite functions, up to a
factor 2 which is due to a different definition of Hermite functions. In the same way, the integration of equalities (37)
and (38) gives the first and second order moment, so the variance is

V. :%(S(V+ 1Lv+1) =205+ 1,9 — 1) +2S(v — 1,v — 1))/S(v, V) — ((S(v + 1,v) — vS(v — 1,v))/S(v, )  (46)

Figs. 1 and 2 present the evolution of the variance and information, as computed in (44) and (46). Fig. 3 gives the informa-
tion-variance product K,, as a function of v. Actually, we know that the true Fisher information is only finite for positive odd
values of v (otherwise the density is discontinuous at the origin and the Fisher information is infinite).

Considering Fig. 3, we read that the positive odd integer which minimizes the product I, ; - V, 1 is v* = 1. Accordingly, we
obtain that the solution f(x)=u(x)® is (32). The values of its variance and Fisher information follow by direct
computation. O

Note that disregarding the differentiability requirement at the origin would lead to select the parameter v = 0.1065, cor-
responding to a variance ¢? = 0.38661 and a “Fisher information” I = 0.91886. So doing one would obtain a product
I- 02 =0.35524, which would break the Cramer-Rao inequality. From the estimation theory point of view, it is clear that
if the density has a bounded support and a discontinuity at the left endpoint of this support, then the variance of the estimate
of the location parameter will be asymptotically zero, which corresponds to an infinite Fisher information in the Cramér-Rao
bound. Clearly, the estimator defined as the minimum of the experimental data converges to the value of the left endpoint of
the support and, in turn, provides an estimate of the value of the location parameter with asymptotically zero-variance.
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Fig. 1. Evolution of the variance V,; in (44) with respect to v.
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Fig. 2. Evolution of the information I, ; in (46) with respect to v. Actually, the true Fisher information is only finite for positive odd values of v.
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Fig. 3. The information-variance product K, as a function of v.

5. Solutions with compact support

We know that the Fisher information associated with a distribution is invariant by translation of this distribution. Fur-
thermore, a scaling of the distribution f(x) according to g(x) = |}7‘f(§) with a0 yields a scaling of the Fisher information
asljg] = ﬁl[ﬂ. Hence, it is possible to restrict our study to any particular interval, and without loss of generality, we choose
the interval [-1,1].

We consider the same problem as before, the minimization of the Fisher information subject to a variance constraint, and
add the boundaries conditions u(1) = u(—1) = 0, which reads
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I(6%) = inf {4/1 u'(x)%dx : /1 u(x)*dx = 1 with Var(u?) = ¢® and u(1) = u(-1) = 0} (47)
- -1

uu2es 1

The problem is invariant by the symmetry x— — x since it is clear that if u(x) is solution, then »(x) = u(—x), which has the
same variance and Fisher information, is also a solution. In fact, the distribution with minimum Fisher information for a gi-
ven variance is unique and even. The general proof of this fact is rather involved and given in [27,28]. But since we have here
the general expression of solutions to the underlying differential equation, it is not difficult to characterize this optimum
solution.

Proposition 4. The unique solution to the problem (47) is the non-negative function

%Mﬁi‘fl \/BXZ
u(x) = Mg ALV 7 (48)

<fll <%Mﬁﬂ3—,(\/ﬁxz)>2dx>%

where /B is the first zero of the function M___._ 1.

4/ 4

Proof. We have already established that the general solution of the differential Eq. (9) can be expressed as a linear combi-
nation of two Whittaker M functions which are two linearly independent solutions:

] 2 1 2
U =1 =M (V) + e oMoy (VEF), (49)
where ¢; and ¢, shall be chosen such that the boundaries and normalization conditions are satisfied. In this last equation, the
first function is even while the second is odd, as it can be observed from the series development (21). Let us note them
Seven(X) and S,qq(x), respectively. The boundaries conditions u(1) = u(—1) = 0 then imply that

Clseven(l) + CZSodd(]) = 01 (50)
Clseven(l) - CZSodd(l) =0. (51)

The only solution is ¢; = ¢c; = 0, except if Soaa(1) and Seven(1) are simultaneously equal to zero. But it is easy to check that
these two functions have no common zero. Therefore, the general solution can not include both terms. There shall be only
one term, either Seven(X) OF Soaq(X), in the general expression of the solution with its parameters adjusted so as to ensure the
boundaries constraints.

We deduce that, since u(x) is either odd or even, the associated density f(x) = u?(x) is even and has zero mean. In such a
case, the set defined by the constraint Var[f] = 62 becomes a convex set and consequently the solution to the minimization of
the Fisher information on this convex set is unique. From the fact both u(x) and »(x) = u(—x) are solution, we deduce that the
unique solution is necessary the even one, that is (48).

Finally, if u(x) is solution, so is w(x) = |u(x)| because w'(x)® = 1/(x)? and w(x)?> = u(x)%. By uniqueness of the solution we
obtain that u(x) > 0 for x € (-1, 1). Therefore the condition u(1) = 0, the fact that all zeros of M__.__,(x) are zero-crossings,
and the non-negativity requirement, yield that the point /j is the first zero of M__,_ - O Wit

4/

In Fig. 4, we give some examples of solutions for several values g2 ¢ [0, 1] of the variance. We see that for low variances
the solution is unimodal while it is bimodal for higher variances. The Fisher information is large for low and high variances
and much lower for intermediate variances. In fact, the minimum Fisher information is a convex function of the variance, cf
[28, Theorem 6.1].

Proposition 5. The minimum Fisher information I1(¢?) is a strictly convex function of ¢2.

Proof. Let u(x)> and »(x)*> be two distributions with minimum informations I(¢2) and I(62) respectively. Since the Fisher
information is strictly convex, with € € (0, 1), we have

Iew? + (1 - €)v?] < el[u?] + (1 — e)l[v?] = €l(a2) + (1 — €)I(a?) (52)
Since the distributions u? and ¢? have zero mean, we have

Varleu? + (1 — €)?] = €02 + (1 — €)a>.
Then, there exists a distribution with the same variance and minimum Fisher information such that

Iew* + (1 - €)v?] = I(ea? + (1 — €)a2). (53)
Finally, combination of (52) and (53) yields

I(€a2 + (1 - €)a%) < el(6X) + (1 - ©)l(d?). O (54)



3840 J.-F. Bercher, C. Vignat/Information Sciences 179 (2009) 3832-3842

0.03 ‘ ‘ ‘
—02=0.05
0.025 ”0320'1 1
: ---0) = 0.13
—o, = 0.22
————— 02 =0.33
0.02}F 1
— 02 =10.69
0.015} |
0.01} R [ - \ . .
> /’ ~ ’ -
’ M P 5 ke N
! v R \»\
0.005F RS X v
; 'r\., \,\N /,z ,,/’\\ \
’ . N s ! N A
el RO

0 :
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 4. Minimum Fisher information distributions with compact (0,1) support for several values of variances. For variances lower than ¢ =1 — 2 ~ 0.1307,
the distributions are unimodal while they become bimodal when 62 > ¢2.

In the case of the R" support, we obtained explicit expressions of both the variance and Fisher information, and as a
result the exact behavior of I(6?). The present case is more delicate. Indeed, although it is possible to obtain from (21)
an exact series expansion of u?(x), where the coefficients depend of hypergeometric functions, the difficulty here is that
we have no analytical expression for the argument of the first zero of the solution, which gives the value of . Only approx-
imations of this value are available [1, p. 510]. Therefore, we have to resort to a numerical determination of the parameters
of the function. Similarly, we cannot give a close form formula for I(?). However, we can still characterize its general
behavior.

Since I(0?) is a convex function, it has a unique minimum, say 2. The following result shows that this minimum is ob-
tained for g = 0. Furthermore, this value discriminates two regimes for the solutions: in the case ¢ < o, we have 8 > 0 while
in the case o > g. we have $ < 0 and the corresponding solution is the Whittaker M function with imaginary arguments.
These facts have already been noticed in [28, Lemmas 5.2 and 5.3], but we provide here an alternate proof.

Proposition 6. f g2 is the minimizer of 1(62), then
(@) foreg<a,, B>0

(b) foro >a., B<O0
(¢) and finally for 0 = 6., p=0.

Proof. Let u(x)> and v(x)? be two distributions with minimum informations I(¢2) and I(c2) respectively, and let us define
g.(x) = eu?(x) + (1 — €)v*(x). By Proposition 1, the Fisher information I(6?) can be expressed as (%) = —4(a, + 8,02). We
use the expansion proved in [27, Satz 7.2, p. 90]:

lg] =1I[v*] - 4 €0} — 07) + 0(€?). (55)
Strict convexity gives

Iig] < elu?] + (1 — e)l[v*] = el(a?) + (1 — €)I(a2). (56)
Let us now take g, = g.. Since I(6?) is the minimum Fisher information, we have the majorization

€l(0?) + (1 - e)l(a3) < I(07), (57)
and therefore I[g.] < I(g2). As a consequence, from (55) and the previous inequality, we obtain

B,e(a? —a2) >0, (58)
which gives cases (a) and (b) in the Proposition. The case (c), = 0, follows by continuity. O

Hence, the solution which realizes the minimum I(¢?) of the Fisher information corresponds to § = 0. This means that this
solution satisfies the differential equation u”(x) =ou(x), with u(1) =u(-1)=0. This problem has as solutions
u(x) = cos(kmx/2), with oo = —k*7? and k integer. Since we know that the solution of the Fisher minimization is non-negative,
there is only one possibility and



J.-F. Bercher, C. Vignat/Information Sciences 179 (2009) 3832-3842 3841

140

120

100

80

60

40

20

0 . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 5. Evolution of the minimum Fisher information I(¢?) in the case of a distribution with bounded support (-1,1).

Proposition 7. The probability density function f(x) = u(x)? defined on [—1, 1] with minimum Fisher information is

f(x) = cos?(mx/2) (39)
with 62 = % —% and I1(6?) = 2. (60)

Fig. 5 reports the behavior of the Fisher information I(6?). The Fisher information tends to infinity for ¢ — 0 and ¢ — +oc
and its minimum is attained for 6> = ¢2. For ¢ — 0, we obtain by [1, Egs. 13.1.32 and 13.5.5] that u(x) « exp fﬁxz/Z , that
is u(x) converges to a Gaussian distribution with variance [f’%. Hence, for small values of the variance, the solution has the
form of a Gaussian distribution concentrated on the origin, and, as a normal distribution, its Fisher information decreases as
1/02. When ¢? increases towards 1, the two modes become more and more pronounced and probability accumulates on +1,
and the probability density function tends to two mass functions, as shown in Fig. 4, and the Fisher information tends to
infinity.

6. Conclusion

In this paper, we have solved the problem of minimizing the Fisher information on restricted supports with a fixed var-
iance. The problem has been stated under the form of a general second order linear differential equation. We have shown
that the general form of the solutions involves Whittaker functions. We have derived the explicit expressions of the solutions
on R* and on an interval. We have first studied the set of solutions on R* and shown that the distribution with minimum
Fisher information is a scaled chi distribution. On the interval [-1,+1], we have characterized the solutions, investigated
their behavior, and shown that the distribution with minimum Fisher information is a squared cosine function.

Future work will consider the extension of these results in the multivariate case. We also intend to investigate some inter-
esting generalized versions of Fisher information [18,4] as suggested by one of the referees of this paper.
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