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Fisher information is of key importance in estimation theory. It also serves in inference
problems as well as in the interpretation of many physical processes. The mean-squared
estimation error for the location parameter of a distribution is bounded by the inverse of
the Fisher information associated with this distribution. In this paper we look for minimum
Fisher information distributions with a restricted support. More precisely, we study the
problem of minimizing the Fisher information in the set of distributions with fixed vari-
ance defined on a bounded subset S of R or on the positive real line. We show that the
solutions of the underlying differential equation can be expressed in terms of Whittaker
functions. Then, in the two considered cases, we derive the explicit expressions of the solu-
tions and investigate their behavior. We also characterize the behavior of the minimum
Fisher information as a function of the imposed variance.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction
Importance of Fisher information as a measure of the information in a distribution is well known. It has many implica-
tions in estimation theory, as exemplified by the Cramér-Rao bound which is a fundamental limit on the variance of an esti-
mator. Recent applications for computing performance bounds can be found in [2,35]. It is used as a method of inference and
understanding in statistical physics and biology, as promoted by Frieden [10–12]. It is also used as a tool for characterizing
complex signals or systems, [17,20,30] with applications, e.g. in geophysics [25,23,3,16], in biology [9], in reconstruction
[5,6,21] or in signal processing [38,37,29]. Other applications are in random censoring [26], hypothesis testing [19], classi-
fication [8]. In robust estimation, minimization of Fisher information has been originally considered by Huber [15], and in the
case of scale and location parameters in a Kolmogorov neighborhood of a parent distribution in [33,34]. Fisher information
for orthogonal polynomials and special functions have been studied in [24,36]. Connections with the differential equations of
Physics have been explored in [11]. It is also interesting to mention that Fisher information associated to a distribution ap-
pears in quantum physics under the name of Weiszäcker energy; in this setting, several inequalities for the Fisher informa-
tion are derived in [22].

It is well known that the distribution with a fixed variance that minimizes the Fisher information on R is the standard
gaussian distribution. However, there are many situations where the variables at hand are known to belong to some subset
of R. For instance, the random variable may be known, on physical grounds, to have only non negative outcomes, e.g. the
variable represents an energy. Variables may also be known to have a distribution with a support restricted to a given inter-
val: this is the case of normalized variables or of the measurements obtained from a physical device with a (necessarily)
. All rights reserved.
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finite output range. In such cases, a model of the data probability distribution can be defined by the distribution compatible
with the constraints extracted from the data with minimum (Fisher) information. This idea, advocated by Frieden and others,
is reminiscent of the idea of maximum entropy distributions, when the measure of information considered is the Fisher
information. By the Cramér-Rao bound, the Fisher information serves as a benchmark for estimators.

In the case of the estimation of a location parameter, the distributions with minimum Fisher information correspond to
the most difficult estimation cases, and thus it is interesting to look for these distributions. This problem has been considered
in the important paper [28], which reading has motivated the present work. This paper presents general results and
characterizations of the solution to the minimization of Fisher information on a compact support, subject to a variance con-
straint. Here, we give the explicit closed-form expressions of the solutions, characterize their behavior and propose alternate
simpler proofs. We also extend the results to the case of distributions with support confined to the positive half line (and of
course the case of any other semi-infinite support as a straightforward consequence).

Let f denote the probability density of a random variable X. The Fisher information (with respect to a translation param-
eter) is defined as
I½f � ¼
Z
S

d ln f ðxÞ
dx

� �2

f ðxÞdx ¼
Z
S

df ðxÞ
dx

� �2 1
f ðxÞdx; ð1Þ
where S ¼ Supp½f � denotes the support of the density, f ðxÞ is supposed differentiable and both f ðxÞ and its derivative f 0ðxÞ are
square integrable on S. We note D the set of functions that verify these hypotheses. It is known [7] that the Fisher informa-
tion is a strictly convex function of the distribution, that is: for f ðxÞ; gðxÞ, and with k 2 ð0;1Þ, then
I½kf þ ð1� kÞg� < kI½f � þ ð1� kÞI½g�: ð2Þ
We are here interested in classifying distributions with a given variance, and consider the variational problem
Iðr2Þ ¼ inf
f
fI½f � : Supp½f � ¼S; f 2 D and Var½f � ¼ r2g ð3Þ
which consists in finding a distribution with minimum Fisher information on the set of all distributions with support S and a
fixed variance r2. The value of the minimum Fisher information obtained for a given variance r2 is denoted Iðr2Þ – the use of
the square brackets and parenthesis distinguishes between the functionals of the probability distributions and the function-
als of the variance. Although I½f � is a convex functional, the set defined by the constraint Var½f � ¼ r2 is not convex, so that
uniqueness of the solution is not guaranteed. For instance, on R, the normal distribution minimizes Fisher information in
the set of distributions on R with a given variance, but in fact irrespectively of the value of the mean: all normal distributions,
whatever their mean, are equivalent solutions. We will obtain in the following that solutions on Rþ or on an interval are in
fact unique.

In Section 2 we give the differential equation that is associated with the problem of minimization of Fisher information,
and then we underline its relationship with known differential equations. So doing, we exhibit some explicit expressions of
the solutions, in terms of Whittaker and parabolic cylinder functions. Then, we examine two particular cases. First, in Section
4 we characterize the solutions with positive support, the behavior of the minimum Fisher information with respect to the
variance, and show that the solution is unique and turns out to be a chi distribution. Second, in Section 5 where the support
is restricted to an interval, we give the expression of the unique solution to the problem and we study the general behavior of
the minimum Fisher information with respect to the variance. Finally, we give the expression of the probability density with
minimum Fisher information among all distributions with finite variance defined on an interval.
2. The differential equation associated with the minimization of Fisher information

In the following, it is convenient to introduce the transformation f ðxÞ ¼ uðxÞ2 and to work with uðxÞ instead of f ðxÞ. With
this notation, the Fisher information becomes
I½f � ¼ 4
Z
S

u0ðxÞ2dx; ð4Þ
where u0ðxÞ denotes the first order derivative of uðxÞ. The variational problem (3) can be restated as follows:
Iðr2Þ ¼ inf
u:u22D

4
Z
S

u0ðxÞ2dx :

Z
S

uðxÞ2dx ¼ 1 and Var½u2� ¼ r2
� �

: ð5Þ
The problem above can also be completed by some additional conditions on the boundaries of the domain: for instance,
when S ¼ ½0 : þ1Þ we need uðþ1Þ ¼ 0 so as to ensure a proper integrable density. At the left endpoint, we shall ensure
continuity and set uð0Þ ¼ 0 in order to keep the Fisher information finite. Indeed, the Fisher information associated with a
distribution is þ1 when the distribution is not continuous on the domain S. Similarly, when the support S is restricted
to S ¼ ½�1;1�, and the density is set to 0 outside of this domain, we shall take uð1Þ ¼ uð�1Þ ¼ 0 in order to ensure continuity
at these boundary points.
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The Lagrangian functional associated with the problem (5) is
Lðu;a; bÞ ¼
Z
S

u0ðxÞ2dxþ a
Z
S

uðxÞ2dx� 1
� �

þ b
Z
S

ðx� lÞ2uðxÞ2dx� r2
� �

; ð6Þ
where a and b are the Lagrange parameters associated with the normalization and variance constraints respectively. The
mean is denoted by l. The minimum of the Lagrangian functional is obtained by standard calculus of variations [13] which
asserts that a minimizer of (6) is necessary a solution of the Euler–Lagrange equation
� d
dx

@L
@u0
þ @L
@u
¼ 0 ð7Þ
which leads to
u00ðxÞ � ðaþ bðx� lÞ2ÞuðxÞ ¼ 0: ð8Þ
Of course, with the simple change of variable z ¼ x� l, the differential equation reduces to
u00ðzÞ � ðaþ bz2ÞuðzÞ ¼ 0 ð9Þ
which is a parabolic differential equation. Interestingly, the minimum Fisher information can be written in terms of the con-
straints and of the Lagrange parameters associated to these constraints.

Proposition 1. The minimum Fisher information in (5) can be expressed as
�1
4

Iðr2Þ ¼ aþ br2 ð10Þ
with uðaÞ ¼ uðbÞ ¼ 0 and where a and b denote the left and right endpoints of the support S.

Note that the Lagrange parameters are (complicated) functions of the constraints, so that the right hand side of (10) is not
an affine function in r2.

Proof. By integration by parts,
�1
4

Iðr2Þ ¼ �
Z
S

u0ðxÞ2dx ¼ �½uðxÞu0ðxÞ�ba þ
Z b

a
uðxÞu00ðxÞdx: ð11Þ
Using the boundary conditions and the differential Eq. (8), we then obtain
�1
4

Iðr2Þ ¼
Z b

a
ðaþ bðx� lÞ2Þu2ðxÞdx: ð12Þ
which reduces to (10) taking into account the values of the constraints. h
3. Solutions to the differential equation

Let us consider the parabolic differential Eq. (9). Using the change of variable x ¼
ffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
b
pp

z, together with the substitution
dðxÞ ¼ u 2

ffiffiffi
b
p� ��1

2x
	 


, the differential equation becomes
d00ðxÞ þ � a
2
ffiffiffi
b
p � 1

4
x2

� �
dðxÞ ¼ 0 ð13Þ
which is the Weber differential equation, whose standard form is
d00ðxÞ þ mþ 1
2
� 1

4
x2

� �
dðxÞ ¼ 0: ð14Þ
Here we simply have m ¼ �a=2
ffiffi
ð

p
bÞ � 1=2. The solutions of the Weber equation can be expressed as a linear combination of

the parabolic cylinder function DmðxÞ and D�m�1ðixÞ [32]:
dðxÞ ¼ c1DmðxÞ þ c2D�m�1ðixÞ ð15Þ
But the Weber equation above can also be converted into the Whittaker equation using the substitution dðxÞ ¼ 1ffiffi
x
p w x2

2

	 

and

z ¼ x2=2, which leads to
w00ðzÞ þ 3
16z2 þ

mþ 1=2
2z

� 1
4

� �
wðzÞ ð16Þ
that has the form of the Whittaker differential equation
w00ðzÞ þ 1=4� l2

z2 þ k
z
� 1

4

� �
wðzÞ ¼ 0 ð17Þ
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with k ¼ m=2þ 1=4 and l ¼ 1=4. But the Whittaker differential equation can also be obtained directly from the initial differ-
ential Eq. (9) with the substitution uðzÞ ¼ 1ffiffi

z
p w nz2

2

	 

and with x ¼ nz2=2. Then, one readily obtains
w00ðxÞ þ 3
16x2 �

a
2nx
� b

n2

� �
wðxÞ ¼ 0; ð18Þ
which reduces to the Whittaker differential Eq. (17) with n ¼ 2
ffiffiffi
b
p

; k ¼ � a
4
ffiffi
b
p , and l ¼ 1

4. The general solutions of the Whit-

taker differential equation can be expressed in terms of the two linearly independent Whittaker functions Mk;lðzÞ and
Mk;�lðzÞ, or with the help of the Whittaker Wk;lðzÞ function defined by
Wk;lðzÞ ¼
Cð�2lÞ

C 1
2� l� k
� �Mk;lðzÞ þ

Cð2lÞ
C 1

2þ lþ k
� �Mk;�lðzÞ ð19Þ
for 2m R N. In these expressions, the Whittaker Mk;lðzÞ function can be expressed as a simple function of the confluent hyper-
geometric function, or Kummer function, M 1

2þ k� l;1þ 2k; z
� �

according to [1, Eq. 13.1.32]
Mk;lðzÞ ¼ zkþ1
2e�

z
2M

1
2
þ k� l;1þ 2k; z

� �
: ð20Þ
Since the Kummer function has an exact series representation, we also have
Mk;lðzÞ ¼ zlþ1
2e�

z
2

X 1
2þ k� l
� �

n

n!ð2kþ 1Þn
zn; ð21Þ
where ðÞn denotes the Pochhammer symbol. As far as the parabolic cylinder function is concerned, it can also be written as a
Whittaker function [32, p. 347]:
DmðxÞ ¼ 2
m
2þ

1
4z�

1
2W m

2þ
1
4;�

1
4

1
2

z2

� �
: ð22Þ
According to this discussion and the relationships between parabolic cylinder functions, Whittaker M and W functions, we
find that the solutions of the differential equation associated with the problem of minimum Fisher information can be ex-
pressed as various equivalent linear combinations of the functions
D� a
2
ffiffi
b
p �1

2
2

ffiffiffi
b

p	 
1
2
z

� �
and D a

2
ffiffi
b
p �1

2
2

ffiffiffi
b

p	 
1
2
iz

� �
;

or
1ffiffiffi
z
p M� a

4
ffiffi
b
p ;14

ffiffiffi
b

p
z2

	 

;

1ffiffiffi
z
p M� a

4
ffiffi
b
p ;�1

4

ffiffiffi
b

p
z2

	 

; and

1ffiffiffi
z
p W� a

4
ffiffi
b
p ;14

ffiffiffi
b

p
z2

	 


Some equivalent expressions of the solutions are given below
uðzÞ ¼ c1D� a
2
ffiffi
b
p �1

2
2

ffiffiffi
b

p	 
1
2
z

� �
þ c2D a

2
ffiffi
b
p �1

2
2

ffiffiffi
b

p	 
1
2
iz

� �
ð23Þ

¼ c01
1ffiffiffi
z
p M� a

4
ffiffi
b
p ;�1

4

ffiffiffi
b

p
z2

	 

þ c02

1ffiffiffi
z
p M� a

4
ffiffi
b
p ;14

ffiffiffi
b

p
z2

	 

ð24Þ

¼ c001
1ffiffiffi
z
p M� a

4
ffiffi
b
p ;14

ffiffiffi
b

p
z2

	 

þ c002

1ffiffiffi
z
p W� a

4
ffiffi
b
p ;14

ffiffiffi
b

p
z2

	 

: ð25Þ
In these formulas, the values of the constants in the linear combinations will be determined according to auxiliary con-
straints, e.g. the boundary values. We now turn to the characterization of solutions on Rþ and then on an interval.

4. Solutions defined on the positive real line

We consider the expression of the solution in terms of the parabolic cylinder functions, as given in (23). A first point is to
check that the solution is bounded on Rþ. Since the Weber equation has only one irregular singularity at z ¼ þ1, it is suf-
ficient to examine the behavior of the solution for z! þ1. The asymptotic expansion of the Weber function DmðzÞ, with
arg z 6 3p=4 is [32, p. 347],[1, Eq. 19.8.1]:
DmðzÞ � e�
1
4z2

zm 1� mðm� 1Þ
2z2 þ mðm� 1Þðm� 2Þðm� 3Þ

24z4 � � � �
� �

: ð26Þ
For z! þ1, we see at once from the asymptotic expansion that DmðzÞ ! 0. Replacing m by �m� 1 and z by iz, we can also
observe that D�m�1ðizÞ tends to infinity when z! þ1. Therefore, since the solution must correspond to a proper integrable
density, the second parabolic cylinder function in (23) must be discarded, with c2 ¼ 0, and the solution becomes
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ua;bðzÞ ¼
D� a

2
ffiffi
b
p �1

2
2
ffiffiffi
b
p� �1

2z
	 


Rþ1
0 D� a

2
ffiffi
b
p �1

2
2
ffiffiffi
b
p� �1

2z
	 
� �2

dz

 !1
2

ð27Þ
where the denominator has been introduced in order to ensure the normalization of the probability density f ðzÞ ¼ uðzÞ2.
As a consequence of the simple form obtained above, it is possible to characterize the general behavior of the minimum

Fisher information as a function of the variance. This is given by the following

Proposition 2. The Fisher information of the minimum information probability density with positive support and fixed variance
r2, corresponding to the solution (27), verifies
Imðr2Þ ¼ Km

r2 ; ð28Þ
where m ¼ �a=2
ffiffiffi
b
p
� 1=2 and Km is a constant.

Proof. Let m ¼ �a=2
ffiffiffi
b
p
� 1=2 and n ¼ 2

ffiffiffi
b
p

, and consider m fixed. Then, n acts as a scaling factor: more precisely, denoting Vm;n

the variance associated with the solution with parameters m and n, we readily have Vm;n ¼ 1
n Vm;1 and Im;n ¼ nIm;1, where Im;n is the

Fisher information. Therefore, the product Im;nVm;n ¼ Im;1Vm;1 does not depend on n and
Im;n ¼
Im;1Vm;1

Vm;n
:

Moreover, from the equality Vm;n ¼ 1
n Vm;1 and the fact that Vm;1 > 0, we deduce that the function n#Vm;n maps Rþ to Rþ so that

it is always possible to find a value n such that Vm;n ¼ r2; thus, the Fisher information Imðr2Þ of the probability density asso-
ciated with the solution uðzÞ in (27) follows the Eq. (28), with Km ¼ Im;1Vm;1. h

Let m� be the value that minimizes Imðr2Þ. For that value and any distribution f on Rþ with same variance r2, we always
have
I½f � P Im� ðr2Þ ¼ Km�

r2 ; ð29Þ
which refines the Cramér-Rao inequality. We will check below that Km� is of course bigger than one.
Actually, we know that the Fisher information is infinite in the case of a non differentiable density. It is thus important

here to ensure continuity and differentiability at the origin. In order to ensure that the Fisher information of the probability
distribution f ðxÞ ¼ u2ðxÞ remains finite, we need to impose uð0Þ ¼ 0. This implies a condition on m so that Dmð0Þ ¼ 0. It is easy
to check that
Dmð0Þ ¼
ffiffiffiffi
p
p

2
m
2C 1

2� 1
2 m

� � : ð30Þ
Therefore, Dmð0Þ ¼ 0 if and only if C 1
2� 1

2 m
� �

! þ1, that is if and only if m is an odd positive integer. In such a case, the Weber
functions can also be expressed in terms of Hermite polynomials HnðxÞ:
DnðxÞ ¼ 2�
n
2e�

x2
4 HnðxÞ: ð31Þ
Then, the determination of the optimum value m� of m such that Imðr2Þ is minimum amounts to minimize Km with m integer.
This leads to the following result.

Proposition 3. For a given variance r2; the distribution on Rþ which minimizes the Fisher information is obtained for m� ¼ 1, and
is
fnðxÞ ¼
ffiffiffiffi
2
p

r
n

3
2x2 exp � nx2

2

� �
; ð32Þ
which is the chi-distribution with three degrees of freedom, and where the parameter n is given by n ¼ 3� 8
p

� �
=r2. Its Fisher infor-

mation, according to (45), is I1;n ¼ 3n. Then the minimum Fisher-variance product is K1 ¼ 9� 24=p � 1:3606.

Proof. In the present case, it is possible to obtain closed-form formulas for the variance and information associated with
(27), even for non integer values of m.

The following relationships, which can be derived from integral representations of parabolic cylinder functions, see [31,
6.2] are useful:
d
dx

DmðxÞ ¼ ð�1=2ÞxDmðxÞ þ mDm�1ðxÞ ð33Þ

¼ ð1=2ÞxDmðxÞ � Dmþ1ðxÞ ð34Þ
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Adding the two equalities and taking the square, we have
4
d
dx

DmðxÞ
� �2

¼ m2Dm�1ðxÞ2 � 2mDm�1ðxÞDmþ1ðxÞ þ Dmþ1ðxÞ2: ð35Þ
Subtracting the Eq. (33) and (34), we obtain
xDmðxÞ ¼ Dmþ1ðxÞ � mDm�1ðxÞ; ð36Þ
from which we deduce
xDmðxÞ2 ¼ Dmþ1ðxÞDmðxÞ � mDm�1ðxÞDmðxÞ; ð37Þ
x2DmðxÞ2 ¼ Dmþ1ðxÞ2 � 2mDmþ1ðxÞDm�1ðxÞ þ m2Dm�1ðxÞ2; ð38Þ
The second ingredient of the calculation are the formulas [14, Eqs. 7.711.2 and 7.711.3], from which we define the functional
Sðl; mÞ:
Sðl; mÞ ¼
Z þ1

0
DlðxÞDmðxÞdx ¼ p2lþmþ1

l� m
1

C 1
2� 1

2 l
� �

C � 1
2 m

� �� 1
C 1

2� 1
2 m

� �
C � 1

2 l
� �

" #
ð39Þ
for l–m, and with
Sðm; mÞ ¼
Z þ1

0
DmðxÞ2dx ¼ p1

22�
3
2
W 1

2� 1
2 m

� �
�W � 1

2 mÞ
� �

Cð�mÞ ð40Þ
where WðxÞ is the digamma function. When l or m are integers, these formulas reduce to
Sð2p;2pþ kÞ ¼ �p22pþ1
2kþ1

2

k
1

C 1
2� p
� �

C �p� 1
2 k

� � ð41Þ

Sð2pþ 1;2pþ 1þ kÞ ¼ p22pþ1
2kþ3

2

k
1

C � 1
2� p

� �
C �p� 1

2 k
� � ð42Þ

and Sðm;mÞ ¼ ð2pÞ
1
2

m!

2
ð43Þ
So doing, using the expression of the solution (27), the definition of the Fisher information (4), equality (35) and the defini-
tions (39) and (40), we obtain the expression
Im;n ¼ nðm2Sðm� 1; m� 1Þ � 2mSðm� 1; mþ 1Þ þ Sðmþ 1; mþ 1ÞÞ=Sðm; mÞ; ð44Þ
which reduces to the very simple expression
Im;n ¼ ð2mþ 1Þn ð45Þ
in the integer case. Let us mention that a similar expression is reported in [36] for the case of Hermite functions, up to a
factor 2 which is due to a different definition of Hermite functions. In the same way, the integration of equalities (37)
and (38) gives the first and second order moment, so the variance is
Vm;n ¼
1
n
ðSðmþ 1; mþ 1Þ � 2mSðmþ 1; m� 1Þ þ m2Sðm� 1; m� 1ÞÞ=Sðm; mÞ � ððSðmþ 1; mÞ � mSðm� 1; mÞÞ=Sðm; mÞÞ2 ð46Þ
Figs. 1 and 2 present the evolution of the variance and information, as computed in (44) and (46). Fig. 3 gives the informa-
tion-variance product Km, as a function of m. Actually, we know that the true Fisher information is only finite for positive odd
values of m (otherwise the density is discontinuous at the origin and the Fisher information is infinite).

Considering Fig. 3, we read that the positive odd integer which minimizes the product Im;1 � Vm;1 is m� ¼ 1. Accordingly, we
obtain that the solution f ðxÞ ¼ uðxÞ2 is (32). The values of its variance and Fisher information follow by direct
computation. h

Note that disregarding the differentiability requirement at the origin would lead to select the parameter m ¼ 0:1065, cor-
responding to a variance r2 ¼ 0:38661 and a ‘‘Fisher information” I ¼ 0:91886. So doing one would obtain a product
I � r2 ¼ 0:35524, which would break the Cramer-Rao inequality. From the estimation theory point of view, it is clear that
if the density has a bounded support and a discontinuity at the left endpoint of this support, then the variance of the estimate
of the location parameter will be asymptotically zero, which corresponds to an infinite Fisher information in the Cramér-Rao
bound. Clearly, the estimator defined as the minimum of the experimental data converges to the value of the left endpoint of
the support and, in turn, provides an estimate of the value of the location parameter with asymptotically zero-variance.



Fig. 2. Evolution of the information Im;1 in (46) with respect to m. Actually, the true Fisher information is only finite for positive odd values of m.

Fig. 1. Evolution of the variance Vm;1 in (44) with respect to m.

Fig. 3. The information-variance product Km as a function of m.

3838 J.-F. Bercher, C. Vignat / Information Sciences 179 (2009) 3832–3842
5. Solutions with compact support

We know that the Fisher information associated with a distribution is invariant by translation of this distribution. Fur-
thermore, a scaling of the distribution f ðxÞ according to gðxÞ ¼ 1

jaj f
x
a

� �
with a–0 yields a scaling of the Fisher information

as I½g� ¼ 1
jaj2

I½f �. Hence, it is possible to restrict our study to any particular interval, and without loss of generality, we choose
the interval [�1,1].

We consider the same problem as before, the minimization of the Fisher information subject to a variance constraint, and
add the boundaries conditions uð1Þ ¼ uð�1Þ ¼ 0, which reads
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Iðr2Þ ¼ inf
u:u22D

4
Z 1

�1
u0ðxÞ2dx :

Z 1

�1
uðxÞ2dx ¼ 1 with Varðu2Þ ¼ r2 and uð1Þ ¼ uð�1Þ ¼ 0

� �
ð47Þ
The problem is invariant by the symmetry x#� x since it is clear that if uðxÞ is solution, then vðxÞ ¼ uð�xÞ; which has the
same variance and Fisher information, is also a solution. In fact, the distribution with minimum Fisher information for a gi-
ven variance is unique and even. The general proof of this fact is rather involved and given in [27,28]. But since we have here
the general expression of solutions to the underlying differential equation, it is not difficult to characterize this optimum
solution.

Proposition 4. The unique solution to the problem (47) is the non-negative function
uðxÞ ¼
1ffiffi
x
p M� a

4
ffiffi
b
p ;�1

4

ffiffiffi
b
p

x2
� �

R 1
�1

1ffiffi
x
p M� a

4
ffiffi
b
p ;�1

4

ffiffiffi
b
p

x2
� �� �2

dx

 !1
2
; ð48Þ
where
ffiffiffi
b
p

is the first zero of the function M � a
4
ffiffi
b
p ;�1

4
.

Proof. We have already established that the general solution of the differential Eq. (9) can be expressed as a linear combi-
nation of two Whittaker M functions which are two linearly independent solutions:
uðxÞ ¼ c1
1ffiffiffi
x
p M� a

4
ffiffi
b
p ;�1

4

ffiffiffi
b

p
x2

	 

þ c2

1ffiffiffi
x
p M� a

4
ffiffi
b
p ;14

ffiffiffi
b

p
x2

	 

; ð49Þ
where c1 and c2 shall be chosen such that the boundaries and normalization conditions are satisfied. In this last equation, the
first function is even while the second is odd, as it can be observed from the series development (21). Let us note them
SevenðxÞ and SoddðxÞ, respectively. The boundaries conditions uð1Þ ¼ uð�1Þ ¼ 0 then imply that
c1Sevenð1Þ þ c2Soddð1Þ ¼ 0; ð50Þ
c1Sevenð1Þ � c2Soddð1Þ ¼ 0: ð51Þ
The only solution is c1 ¼ c2 ¼ 0, except if Soddð1Þ and Sevenð1Þ are simultaneously equal to zero. But it is easy to check that
these two functions have no common zero. Therefore, the general solution can not include both terms. There shall be only
one term, either SevenðxÞ or SoddðxÞ, in the general expression of the solution with its parameters adjusted so as to ensure the
boundaries constraints.

We deduce that, since uðxÞ is either odd or even, the associated density f ðxÞ ¼ u2ðxÞ is even and has zero mean. In such a
case, the set defined by the constraint Var½f � ¼ r2 becomes a convex set and consequently the solution to the minimization of
the Fisher information on this convex set is unique. From the fact both uðxÞ and vðxÞ ¼ uð�xÞ are solution, we deduce that the
unique solution is necessary the even one, that is (48).

Finally, if uðxÞ is solution, so is wðxÞ ¼ juðxÞj because w0ðxÞ2 ¼ u0ðxÞ2 and wðxÞ2 ¼ uðxÞ2. By uniqueness of the solution we
obtain that uðxÞP 0 for x 2 ð�1;1Þ. Therefore the condition uð1Þ ¼ 0, the fact that all zeros of M� a

4
ffiffi
b
p ;�1

4
ðxÞ are zero-crossings,

and the non-negativity requirement, yield that the point
ffiffiffi
b
p

is the first zero of M� a
4
ffiffi
b
p ;�1

4
. h

In Fig. 4, we give some examples of solutions for several values r2 2 ½0;1� of the variance. We see that for low variances
the solution is unimodal while it is bimodal for higher variances. The Fisher information is large for low and high variances
and much lower for intermediate variances. In fact, the minimum Fisher information is a convex function of the variance, cf
[28, Theorem 6.1].

Proposition 5. The minimum Fisher information Iðr2Þ is a strictly convex function of r2.

Proof. Let uðxÞ2 and vðxÞ2 be two distributions with minimum informations Iðr2
uÞ and Iðr2

v Þ respectively. Since the Fisher
information is strictly convex, with � 2 ð0;1Þ, we have
I½�u2 þ ð1� �Þv2� < �I½u2� þ ð1� �ÞI½v2� ¼ �Iðr2
uÞ þ ð1� �ÞIðr2

vÞ ð52Þ
Since the distributions u2 and v2 have zero mean, we have
Var½�u2 þ ð1� �Þv2� ¼ �r2
u þ ð1� �Þr2

v :
Then, there exists a distribution with the same variance and minimum Fisher information such that
I½�u2 þ ð1� �Þv2�P Ið�r2
u þ ð1� �Þr2

vÞ: ð53Þ
Finally, combination of (52) and (53) yields
Ið�r2
u þ ð1� �Þr2

vÞ < �Iðr2
uÞ þ ð1� �ÞIðr2

vÞ: � ð54Þ



Fig. 4. Minimum Fisher information distributions with compact (0,1) support for several values of variances. For variances lower than r2
� ¼ 1

3� 2
p2 � 0:1307,

the distributions are unimodal while they become bimodal when r2 > r2
� .
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In the case of the Rþ support, we obtained explicit expressions of both the variance and Fisher information, and as a
result the exact behavior of Iðr2Þ. The present case is more delicate. Indeed, although it is possible to obtain from (21)
an exact series expansion of u2ðxÞ, where the coefficients depend of hypergeometric functions, the difficulty here is that
we have no analytical expression for the argument of the first zero of the solution, which gives the value of b. Only approx-
imations of this value are available [1, p. 510]. Therefore, we have to resort to a numerical determination of the parameters
of the function. Similarly, we cannot give a close form formula for Iðr2Þ. However, we can still characterize its general
behavior.

Since Iðr2Þ is a convex function, it has a unique minimum, say r2
� . The following result shows that this minimum is ob-

tained for b ¼ 0. Furthermore, this value discriminates two regimes for the solutions: in the case r < r�, we have b > 0 while
in the case r > r� we have b < 0 and the corresponding solution is the Whittaker M function with imaginary arguments.
These facts have already been noticed in [28, Lemmas 5.2 and 5.3], but we provide here an alternate proof.

Proposition 6. f r2
� is the minimizer of Iðr2Þ, then

(a) for r < r�; b > 0
(b) for r > r�; b < 0
(c) and finally for r ¼ r�; b ¼ 0.

Proof. Let uðxÞ2 and vðxÞ2 be two distributions with minimum informations Iðr2
uÞ and Iðr2

vÞ respectively, and let us define
g�ðxÞ ¼ �u2ðxÞ þ ð1� �Þv2ðxÞ. By Proposition 1, the Fisher information Iðr2Þ can be expressed as Iðr2Þ ¼ �4ðav þ bvr2

vÞ. We
use the expansion proved in [27, Satz 7.2, p. 90]:
I½g�� ¼ I½v2� � 4bv�ðr2
u � r2

vÞ þ oð�2Þ: ð55Þ
Strict convexity gives
I½g�� < �I½u2� þ ð1� �ÞI½v2� ¼ �Iðr2
uÞ þ ð1� �ÞIðr2

vÞ: ð56Þ
Let us now take ru ¼ r�. Since Iðr2
� Þ is the minimum Fisher information, we have the majorization
�Iðr2
� Þ þ ð1� �ÞIðr2

vÞ 6 Iðr2
vÞ; ð57Þ
and therefore I½g�� < Iðr2
vÞ. As a consequence, from (55) and the previous inequality, we obtain
bv�ðr2
� � r2

vÞ > 0; ð58Þ
which gives cases (a) and (b) in the Proposition. The case (c), b ¼ 0, follows by continuity. h

Hence, the solution which realizes the minimum Iðr2
� Þ of the Fisher information corresponds to b ¼ 0. This means that this

solution satisfies the differential equation u00ðxÞ ¼ auðxÞ, with uð1Þ ¼ uð�1Þ ¼ 0. This problem has as solutions
uðxÞ ¼ cosðkpx=2Þ, with a ¼ �k2p2 and k integer. Since we know that the solution of the Fisher minimization is non-negative,
there is only one possibility and
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Fig. 5. Evolution of the minimum Fisher information Iðr2Þ in the case of a distribution with bounded support (�1,1).
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Proposition 7. The probability density function f ðxÞ ¼ uðxÞ2 defined on [�1,1] with minimum Fisher information is
f ðxÞ ¼ cos2ðpx=2Þ ð59Þ

with r2
� ¼

1
3
� 2

p2 and Iðr2
� Þ ¼ p2: ð60Þ
Fig. 5 reports the behavior of the Fisher information Iðr2Þ. The Fisher information tends to infinity for r! 0 and r! þ1
and its minimum is attained for r2 ¼ r2

� . For r! 0, we obtain by [1, Eqs. 13.1.32 and 13.5.5] that uðxÞ / exp �b
1
2x2=2

	 

, that

is uðxÞ converges to a Gaussian distribution with variance b�
1
2. Hence, for small values of the variance, the solution has the

form of a Gaussian distribution concentrated on the origin, and, as a normal distribution, its Fisher information decreases as
1=r2. When r2 increases towards 1, the two modes become more and more pronounced and probability accumulates on �1,
and the probability density function tends to two mass functions, as shown in Fig. 4, and the Fisher information tends to
infinity.
6. Conclusion

In this paper, we have solved the problem of minimizing the Fisher information on restricted supports with a fixed var-
iance. The problem has been stated under the form of a general second order linear differential equation. We have shown
that the general form of the solutions involves Whittaker functions. We have derived the explicit expressions of the solutions
on Rþ and on an interval. We have first studied the set of solutions on Rþ and shown that the distribution with minimum
Fisher information is a scaled chi distribution. On the interval [�1,+1], we have characterized the solutions, investigated
their behavior, and shown that the distribution with minimum Fisher information is a squared cosine function.

Future work will consider the extension of these results in the multivariate case. We also intend to investigate some inter-
esting generalized versions of Fisher information [18,4] as suggested by one of the referees of this paper.
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