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The Levy distribution is extensively used in the field ofnon-extensive statistical mechanicswhere it succeeds in modelling
power-law phenomena, long-range interactions, long-range memory or space-time multifractal structure. Applications
include fully developed turbulence, Levy anomalous diffusion, statistics of cosmic rays... There are several indications that
non-extensive statistical mechanics results are physically relevant for partially equilibrated or nonequilibrated systems,
with a stationary state that is characterized by fluctuations of an intensive parameter.
We show that the Levy distribution can be derived as the minimizer of the Kullback-Leibler information divergence with
respect to a reference distribution, where the minimization is carried under a mean log-likelihood constraint and a (mean)
observation constraint. Here, the mean log-likelihood constraint characterizes the ‘displacement’ from the conventional
equilibrium.
We examine two scenario for the mean observation constraint, that lead to two Levy distributions with opposite exponents
and involve naturally the so-called ‘escort’ or ‘zooming’ distributions. We derive two unimodal modified dual functions,
whose maximization enable to find the index of the Levy distribution.
The minimum of the Kullback-Leibler information divergence under our constraints is a level-one entropy. In some
special cases for the reference distribution, we derive the expression of the partition function, and recover some
well-known entropy functionals in the classical Gibbs-Boltzmann-Shannon limit.

An amended MaxEnt formulation for displaced equilibriums

The original maxent formulation “find the closest distribution to a reference under a mean constraint” may be amended by intro-
ducing for instance a new constraint that will displace the equilibrium. The partial or displaced equilibrium may be imagined as an
equilibrium characterized by two references, sayP1 andQ. Instead of selecting the nearest distribution to a reference under a mean
constraint, we may look for a distributionP ∗ close simultaneously to two distinct references: such a distribution will be localized
somewhere ‘between’ the two referencesP1 andQ. For instance, we may consider two systems in contact characterized by two
prior reference distributions. The global equilibrium is attained for some intermediate distribution

FindP ∗ such that the {
minP D(P ||Q) = minP

∫
P (x) log P (x)

Q(x)dx

s.t θ = D(P ||Q)−D(P ||P1) =
∫
P (x) log P1(x)

Q(x) dx
(1)

whereθ is some constant that tune the equilibrium betweenP1 andQ.
Solution is theescortor zoomingdistribution

P ∗(x) =
P1(x)αQ(x)1−α∫
P1(x)αQ(x)1−αdx

, (2)

under observable mean values (constraints)

In order to take into account an observable as a mean value under some distribution, we may adjust one of the reference distribution.
Suppose that the subsystem with distributionP1 is isolated, and that one can have access to the mean underP1. Then what shall be
the distributionP1 with given mean such that the equilibrium distributionP ∗ remains simultaneously close toP1 andQ ? But the
observable may also be measured as the mean under the equilibrium distributionP ∗, that triggers the new question: what shall be
the distributionP1 such thatP ∗ possess a known mean and remains simultaneously close toP1 andQ ?

F(m) =

 minP1

{
minP D(P ||Q) = minP

∫
P (x) log P (x)

Q(x)dx

subject to:θ =
∫
P (x) log P1(x)

Q(x) dx

subject to:m = EP1 [X] orm = EP∗ [X]
= sup

α

[
αθ −

{
maxP1(α− 1)Dα(P1||Q)

subject to:m = EP1 [X] orm = EP∗ [X]

]



whereEP [X] represents the statistical mean under distributionP : EP [X] =
∫
xP (x)dx. EP∗ [X] is nothing else but the Tsallis-

Mendes-Plastino (TMP) generalized mean constraint, the ‘α-expectation’ of non-extensive thermodynamics.
The right hand side is obtained by dual attainment, provided the solution exists, by computing the RHS in two steps: first

minimize with respect toP taking into account the mean log-likelihood constraint, and obtain (2), and secondly, minimize with
respect toP1. Hence the whole problemamounts to the extremization of Rényi information divergence under a mean constraint.

The ‘contracted’ Rényi information divergence or of Kullback-Leibler information divergence for a given meanm and a log-
likelihood constraintθ, functionalsF (1)

α (m) andF (α)
α (m) are level-one entropy, positive and strictly convex forα ∈ [0, 1]:

F (1)
α (m)

(
resp.F (α)

α (m)
)

=
{

minP1(1− α)Dα(P1||Q)
subject to:m = EP1 [X] ( resp.m = EP∗ [X]) , (3)

In the two cases, the general solution is given (implicitely) by

P1(x) = [γ(x− xγ,α) + 1]ν+Q(x)eDα(P1||Q). (4)

where

(i) ν = ξ = 1
α − 1 andxλ,α is the statistical mean underP1, for the classical mean constraint,

(ii) ν = −ξ = 1
1−α andxλ,α is the generalizedα-expectation underP1 for the generalized mean constraint.

Parameterγ is the Lagrange parameter such that the constraint is verified. This distribution is self-referential because it is im-
plicitely defined by its mean and Rényi divergence toQ.

Dual functions

The corresponding dual functions are given by

D(γ) = (1− α)Dα(P ||Q) + λ(m− xγ,α)

with

(i) Dα(P1||Q) = − log (Zξ+1(γ, xγ,α)) andxγ,α is the statistical mean underP1, for the classical mean constraint,

(ii) Dα(P1||Q) = − log (Z−ξ(γ, xγ,α)) andxγ,α is the generalizedα-expectation underP1 for the generalized mean constraint,

and where we used thepartition function

Zν(γ, xγ,α) =
∫

[γ(x− xγ,α) + 1]ν+Q(x)dx

But again such an expression is not exploitable in practice, because the distribution, and its partition function, are implicitely
defined. Thus we have to look after some ‘alternate’ dual function, that is computable and provides the same optimum solution as
the original dual function.

Two alternate ‘computable’ dual functions, with the same maximum as the original one can be found:

D#(λ) =
(

1
ξ

)
logZξ+1(λ,m), or D#(λ) =

(
1
ξ

)
logZ−ξ(λ,m),

for the classical mean and for the generalized mean respectively.

A generalized thermodynamics

Define an entropy

S = − 1
ν + 1

logZν+1(γ, U),

and a functionalΦ(γ, U) = S − γU (or the free energyF = U − 1
γS). From general properties of Levy distribution,

Eν [x−m] =
1

ν + 1

dZν+1(γ,U)
dγ

Zν(γ, U)

and sinceZν+1(γ∗, U) = Zν(γ∗, U) for the optimumγ∗, we have

dS

dγ
= 0

dS

dU
= −γ dΦ((γ, U))

dγ
= −U dΦ((γ, U))

dU
= 0

that is the whole Legendre structure of thermodynamics.



Some special cases of entropy functionals

Partition functions are computable for particular cases of references measures. Then one can look forγ∗(m) such thatdD#(γ∗) =
0 and then expressF (1)

α (m) resp.F (α)
α (m) since they are equal toD#(γ∗) at the optimum.

Forα→ 1, we obtain

1. Fξ(x) = x log x+ (1− x) log(1− x)− log(2) for Bernoulli reference (Fermi-Dirac entropy),

2. Fξ(x) = 1
ξ (−xβ − ln (−xβ)− ln (−β)− 1) for the exponential reference (Itakura-Saito or Burg entropy)

3. Fξ(x) = 1
ξ

(
x ln x

µ + (µ− x)
)

for Poisson reference (Shannon entropy).

[Jay82, Ell85, GG04, BS02, Kul59]
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