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Abstract— In this paper, we propose two contributions to the 
simulation and design of an All-Digital Phase-Locked Loop 
(ADPLL) for RF applications. First, we extend the behavioral 
model we already proposed, in order to include detailed 
fractional aspects. Second, we propose a new adaptive 
algorithm that can be integrated in this ADPLL in order to 
lower its hardware complexity, and argue on a recently 
proposed algorithm for DCO gain estimation. These points are 
illustrated through simulations. 

I. INTRODUCTION 
Staszewski et al. recently presented a new All Digital 

Phase-Locked Loop based RF frequency synthesizer [1]. 

 

 

 

 

 

 

 

 

 

Figure 1.  ADPLL based RF frequency synthesizer [1] 

A Digitally Controlled Oscillator (DCO) allows for this 
PLL to be implemented in a fully digital manner [2]. The 
DCO is normalized using a compensation gain, in such a 
way that its input, the Normalized Tuning Word (NTW), 
becomes independent of the gain KDCO of the oscillator. 

The Frequency Command Word (FCW) enables to tune 
the output frequency of the DCO, noted FDCO, according to 

 DCO REFF FCW F= × . (1) 

Two phase accumulators, the reference phase 
accumulator (RPA) and the DCO phase accumulator (DPA), 
are used to count cycle periods of reference and feedback 
oscillators. A synchronous clock, FS, undersamples the 
output of the DPA, so that comparison of the two phases can 
be performed using the same clock.  

The retimed clock, FS, is achieved by oversampling the 
reference clock, FREF, by the oscillator clock, FDCO. Note that 
in Figure 1, index i and k do not refer to the same clock.  

ADPLL precision depends on phase detector 
performance. One can show that this phase error is 
proportional to a time delay between input and output clocks.  

With phase accumulators, the precision cannot be better 
than ±1/2 DCO period. Higher ADPLL precision is obtained 
using fractional phase error correction achieved by Time to 
Digital Converter (TDC). It is used to convert the delay 
between DCO and reference clocks directly into a digital 
quantity [3], with a time resolution, noted ∆t, that can be 
equal to the elementary propagation delay through an 
inverter gate. This delay is converted to a normalized phase 
value using normalization factor DT/1 , where DT  is an 
average value of the DCO period. 

In previous work [4] we have proposed a time behavioral 
model that allows fast simulation (about 100us/s of 
simulation) and easy access to all variables of interest of this 
ADPLL. In section II, we present the principle of this model 
and an improved version taking into account a more precise 
model of the TDC. In section III, we argue and work out an 
adaptive algorithm to avoid division operation in phase 
correction architecture and we argue on a recently proposed 
algorithm for DCO gain estimation. 

II. PRINCIPLE AND MODEL OF PHASE ERROR 
CORRECTION 

The time behavioral model was presented in [4]. In 
particular, this model recursively computes two important 
values: τ k which is the delay between rising edges of 
reference and DCO clocks, and N[k], an integer value which 
is the number of DCO periods during a FREF cycle. The index 
k is linked to FS clock.  

We demonstrated [4] that 
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where  REFDi TkTkN )()( = ,  ⋅  the rounding down 
operator and sign(x) is the sign function: sign(x)= –1 if x<0, 
and sign(x)= 1 otherwise. 

Then, outputs of phase accumulators can be expressed as 

 ( ) ]2mod[][]1[ R
RR FCWkk +=+ φφ  (4) 

and 

 ( ) ]2mod[][][]1[ D
DD kNkk +=+ φφ  (5) 

with R and D, respectively the width of reference and DCO 
phase accumulators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Time-to-Digital Converter (TDC) architecture 

 

 

 

 

 

 

Figure 3.  Inputs / outputs of the TDC 

In our first approach, the fractional phase error ε was 
modelized as the quantified version of the delay between 
rising edges of reference and DCO clocks, normalized to 

DT/1 , an averaged value of the DCO frequency. 

A more precise model can be derived from the 
architecture of the TDC. The time-to-digital conversion [3] is 
realized by passing the DCO signal through a chain of 
inverters gates of typical delay ∆t (as shown in Figure 2). 
Then, each delayed output is sampled by the same reference 
clock. The Edge Detector detects first rising and falling edge 

transitions and use a thermometer to binary encode time 
differences ∆tR and ∆tF (see Figure 3) into the number 

Rt∆ and Ft∆ of unit gate delays. 

From Figure 3, it is easy to check 
that )k(t)k(t)k(T F2FD ∆−∆= , and that the ratio 

)k(T)k(t)k(t)k( DFR ∆−∆=β  is the duty cycle )k(ρ if 
)k(t)k(t FR ∆>∆  and )k(1 ρ−  otherwise. 

Using the delay τ k we can derive outputs of the TDC 
(with variables defined as on Figure 3) 
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where  ⋅  is the rounding down operator. 

With these equations, we take into account all 
quantization effects. In Particular, we can highlight the 
incapacity of this architecture to detect a rising edge delay 
lower than ∆t. Indeed, in this case, the output Rt∆  is false 
and must be corrected. A solution is to add a D flip flop 
between FDCO and FREF (dashed line in Figure 2). Then, the 
TDC is able to detect this case and (6) simplifies to: 
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where  ⋅  is the rounding up operator. 

But a new problem appears; Rt∆  is now overestimated 
and can be, in definite condition, greater than the estimated 
DCO period. To avoid this situation, we simply subtract 1 to 

Rt∆  before gain normalization. 

Finally, the normalized fractional phase error ε −, in a 
fixed-point digital word, can be expressed as 

 ( )  [ ]F
DR Tktk 2mod1)()( 1−− ×−∆=ε  (8) 

with F = R−D and 1−
DT  the inverse average DCO period, 

used to normalize the TDC output, that is, if the average is 
evaluated over NAVG DCO periods:  
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In practice, it may be possible to suppose that 21)k( =ρ  
(50% duty cycle) in order to reduce the TDC complexity (but 
of course at the price of a noise term). 

A LMS algorithm is proposed in section III in order to 
compute numerically 1

DT −  without requiring a digital 
divider. 

The phase error is a signed word of width R, computed 
by subtracting 2 unsigned words of same width (φD and ε − 
are concatenated to form a word of width R). Thus, equation 
of phase error can be expressed as 
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where the 2R correction term permits to take into account that 
the R-width rollovers of inputs are transparent to the phase 
error (cf. Figure 4). 

 

 

 

 

 

 

 
 

 
 

 
Figure 4.  Example of Phase comparison when ADPLL is locked 

This extension of our behavioral model enables fast 
simulations that give identical results to the “circuits” 
(VHDL) model, while allowing access and control over all 
variables of interest. These points are of high interest in 
evaluation and design of new solutions. 

III. LMS ALGORITHMS FOR GAIN ESTIMATION 

A. LMS Algorithm for Inverse DCO period estimation 
The computation of the fractional phase error ε involves 

the multiplication of the output of the TDC by the inverse 
period of the DCO, 1−

DT  (cf. Figure 3).  

A possible approach [3] is to estimate DT  by an average 
of NAVG values of TD, and then use a digital divider. DT  is 
then a random value. The inversion can be done via an 
adaptive method, which results in the inversion without 
divider, and provides adaptivity to the context.  

Let DT/1=α , then clearly, α can be found as a 

minimizer of 



 −Ε=

2
1)( DTJ αα . 

Thus, we can adopt the simple LMS algorithm  

 Jnn ∇−=+ µαα )()1(  (11) 

with ( )2 1D DJ T Tα∇ = − − , the instantaneous estimate of 
gradient of the criterion ( )J α . 

A guideline for the choice of the step is 
)T.K(1 2

Dopt =µ , with K a security factor. Indeed, results on 

the LMS show that )(1 maxλµ Kopt = , where 2
max DT≈λ , 

the maximum eigenvalue of the correlative matrix. Using 
this adaptation step and noting that DT1≈α at 
convergence, we may rewrite the algorithm as 
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Complexity can be further reduced using a sign algorithm 
version: 

 ( )D
n

opt
nn T)()()1( 1sign αµαα −+=+  (13)  

Note also that instead of using a single estimation of DT , 
and in order to preserve adaptivity, we can use a sliding 
window, such as  

 )()1()()1( )()( NkTkTkTkT DD
N

D
N

D −−++=+  (14) 

or an exponential mean such as  

 )1()1()()1( +−+=+ kTkTkT DDD ββ  (15) 

with β the forgetting factor.  

Simulations of the LMS algorithm for DT  inversion 
using a Matlab and a VHDL implementation are given in 
Figure 5. These show both effectiveness and fast 
convergence of the algorithm. Here )(n

DT  is computed using 
a sliding window of length 128. 

Imprecision from Rt∆  and Ft∆  can be modelized as two 
uniform random variables, on an interval ∆t (the resolution). 
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Then )k()k(t)k(t)k(T FRD β∆−∆=  is distributed 
according to a triangular distribution, with a variance 

622 t
DT ∆=σ . Then when the algorithm is iterated at the 

“sliding rate”, (that is each 128 samples of TD), then the 
noise is uncorrelated (otherwise, the correlation is simply 
“the square convolution” of the window shape).  
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Figure 5.  1/TD error convergence for an initial error of 12%. Matlab (a) 

and VHDL (b) simulations. 

Both algorithms converge easily in less than 15 
iterations. Iterating the algorithm at the “sliding rate” reduces 
consumption and noise but increase the settling time.  

Comparison between digital implementation of the LMS 
algorithm and a digital divider confirm the reduction of the 
hardware complexity (the integrated circuit area is reduced 
by ¼ for F=6). 

B.  Adaptive DCO Compensation Gain Estimation 
The DCO gain is not precisely known and depends on the 

operating point. The architecture involves the normalization 
by an estimated value of the DCO gain. 

In a recent publication [5], Staszewski et al. propose a 
LMS adaptation algorithm. In order to estimate the 
normalization gain -1ˆ

DCOK , they present the simple adaptation 
rule: 
 ∇+−= −− µ]1[ˆ][ˆ 11 nKnK DCODCO  (16)  

with a sign algorithm, )(sign FCWEφ=∇ . We show here 
that such an algorithm can be interpreted as the minimization 
of a simple criterion. 

Indeed, when the PLL is settled, if we apply a ∆FCW 
step on the Frequency Command Word (FCW), we obtain a 
deviation of the phase error mE r φφ ∆−=∆ )1( , with 

DCODCO KKr ˆ= , and the phase deviation mφ∆  related to 
∆FCW.  

 

Note that this reasoning is only correct for a type I PLL 
(without filtering effect) or when ∆FCW is applied as a 2 
points modulation scheme. 

Then, using the minimization criterion ][)( 2
ErJ φ∆Ε= , 

the classical adaptation equation of a gradient algorithm is  
Jnrnr ∇−−= µ]1[][  with [ ]rmJ E ∂∆∂∆Ε=∇ /2 φφ  and 

mE r φφ ∆−=∂∆∂ . 

This results in the LMS recursion 

 mEnrnr φφµ ∆∆+−= 2]1[][ , (17) 

using the instantaneous estimate of J∇ . 

Letting ][ˆ][][ nKnKnr DCODCO= , we also obtain 

 









∆∆+−= −−

mE
DCO

DCOREFDCOREF K
nKFnKF φφµ2]1[][ 11  (18) 

Last, with DCOREF KFµµ 20 =  and using the sign of 
the error, we obtain  

 ( ))(]1[][ 0
11

mEDCOREFDCOREF signnKFnKF φφµ ∆∆+−= −−  (19) 

And with )(sign)(sign FCWm ∆=∆φ , we recover the 
proposed algorithm (16). 

IV. CONCLUSION 
In this communication, we have presented an extended 

behavioral model for simulation and design of an All Digital 
PLL, including account for fractionnal aspects. The main 
advantage of such a model is that it enables fast temporal 
simulations while giving easy access and control to all 
variables and parameters. 

A second contribution of this paper is the presentation or 
interpretation of adaptive algorithms that can take place in 
this kind of architecture, in order to lower the hardware 
complexity. 
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