
IMC IMC & M2 SIS & I5FI
————– Image Compression IMC- Master SIS - I5FI

ESIEE-Paris

Given by J.-F. BERCHER

Lab on image compression

GOAL OF THE LAB

In this lab, we will study an image compression method analog to the JPEG method, with some simplifactions
with respect to the standard. The goal is still to obtain a true compression method, that begins with an image and
end with a binary stream, whose decoding enable to find back an image that resemble to the original one. The
programs will be implemented under Matlab. Many functions are offered. Some others will have to be imple-
mented. Different gray level images are available (PGM format – Portable GrayMap). The function getpgm (or
imread) enables to load these images as a matrix in Matlab’s workspace, e.g. A=getpgm(’bird.pgm’);
loads the pgm image into the matrix A. The commandimagesc (image scaled) displays an image using all the
range specified by the colormap. In our case, so as to display in gray levels, one has to choose colormap(’gray’).
Available images : bird.pgm, boat.pgm, frog.pgm, lena.pgm, math4.pgm, mandrill.pgm, peppers.pgm.

I. LET US PLAY WITH MATLAB

Partial image Load an image using getpgm. Display your image. Create a function so as to extract a block of
specified size (e.g. 8x8) at a given position in the image. Display the result. ([Q0])

Matlab is a vectorial interpreter, which enables very easily to extract a submatrix. Thus, A(k*L+1 :k*(L+1),
p*L+1 :p*(L+1)) extract a submatrix of size L*L, from the row k*L+1 to the row k*(L+1) and from the
column p*L+1 to p*(L+1).
Reading of the remaining blocks Using two for loops, display the remaining blocks in the lexicographic order
([Q1])

NbBlocks=min(size(IMG))/block_size;
[M N]=size(IMG);
iter=0;
for m=1:block_size:M
for n=1:block_size:N
iter=iter+1;
message=sprintf(’Processing block number %d’,iter); disp(message);
Block=IMG(m:m+block_size-1,n:n+block_size-1);
imagesc(Block); colormap(’gray’)
pause
end;
end;

DCT2D ([Q2] )On a block A of any size, compute the 2D cosine transform (function dct2d). Display the
result B and note in particular the importance of low frequencies. Compute the 2D inverse DCT of B, (function
idct2d) and compare the result C to the initial image A.
DCT2D and rounding Round the result B to the nearest integer (function round). Compare the result C of the
inverse DCT of B to the initial image A. Compute the quadratic distorsion according to {mean(mean(abs(C-A).^2))}
DCT2D and rounding In the previous operations, add a weightening on the result B by a matrix 1./Q (The
matrix Q is read by stdQ – note the importance of ./) before the rounding operation. Unweight this result,
noted B, by B.*Q (note the importance of the . in .*) before applying the inverse DCT.
[Q3] Compare this reconstruction to the initial image A. Compute the quadratic distortion.

Page 1/3

bird.pgm
boat.pgm
frog.pgm
lena.pgm
math4.pgm
mandrill.pgm
peppers.pgm


II. LET US PLAY AGAIN WITH MATLAB

Zig-zag reading The function zz.m reads a block in zigzag order. If Block is a matrix, and if one let Z=zz(8),
then Block(Z) is a vector that contains the result of the reading in the zigzag order. In order to convince yourself
test the two commands above.
– The function RLCjpg.m returns a matrix in the RLC format, JPEG variant, that is [Number of preceding
zeros, value]. The [0 0] code marks the end of the block. Test this function on the result of the previous zigzag
reading.

Binary representation The function dec2bin.m converts a decimal number into binary. Test the function, e.g.
on 1,2, 4,5, 8,9, 27, 53
Category Codes and binary values The function cat_code.m computes the categories and binary values
associated to a decimal integer.
[Q5] Test this function. Beware, there are two outputs. Compute the categories and binary values associated
with the outputs of the RLC codes given by RLCjpg.m. Test this on the result of an RLC encoding. You will
need to use a loop like
U=RLCjpg(...);
[LL MM]=size(U);
for nn=1:LL
[cat,bin]=cat_code(U(nn,:));
disp([’U=’ num2str(U(nn,:)) ’ Cat= ’ num2str(cat) ’ Bin=[’ num2str(bin) ’]’ ]);
end;

Huffman encoding Several Huffman tables are available, for different values of the compression param-
eter s. These tables, called HH are contained in the files htabXX.mat, with XX ∈ 01, 05, 1, 2, 3, 4, 5,
10, 20 (load with load htabXX.mat;) ; if [nb_zeros, cat] is a couple [Number of zeros, category], then
HH(nb_zeros+1,cat+1) is the corresponding Huffman code. Actually, we have stocked in the Huffman table the
indexes on the set of binary words rather than the actual (variable length) words. To each binary word is asso-
ciated a decimal number, by a simple enumeration : [0 1 00 01 10 11 000 001 etc] –> [1 2 3 4 5 6 7 8 etc]. The
function bstr2idx.m gives the translation binary words to decimal while idx2bstr.m realizes the inverse
translation. Hence, M=idx2bstr(HH(nb_zeros+1,cat+1)) is the codeword associated with the couple
(nb_zeros, cat). If U is the RLC result, U(n,1) is the number of zeros, and the category and binary value are
given by [cat,bin]=cat_code(U(n, :)); The binary stream is then obtained by the concatenating
the Huffman codeword M and the binary value bin, as [M bin].
[Q6] Build the binary stream corresponding to the proposed test matrix (There is only two or three lines to
add after cat_code). The length of the binary stream will be obviously given using the function length. The
compression ratio is given by the ration of the number of bits in the initial image (in our case number of pixels
x 8 bits), to the number of bits of the encoded image (length of the binary stream). Compute the compression
ratio.

III. FINAL CODER

Modify the script cod1.m into a new function cod2.m so as to obtain a binary sequence as the output. For each
DCT block, one will have to add the following operations :
i zigzag reading,
ii RLC encoding,
iii category coding,
iv Huffman coding,
v creation of the binary stream.
Finally, you will also have to give the effective compression ratio R at the output of the encoder. The call to
cod2 should be
[BinaryStream, R, ImTr] = cod2(Img,L,Q,HH).
The output ImTr will enable to decode the image using decod1. You will evaluate the compression ratio
and distortion for several values of the parameter s and you may plot the compression-distortion curve. The
implementation of the decoder from the binary sequence is optional.

Page 2/3



List of available functions

For each of the following function, it is possible to obtain help by
help name_of_function
It is also possible to list the content by (type) or to edit it.

cat_code.m Compute the category codes and the associated binary value.
dct1d.m Compute the 1D DCT
dct2d.m Compute the 2D DCT
getpgm.m Read a pgm image
huff.m Huffman algorithm
idct1d.m Inverse DCT 1D
idct2d.m Inverse DCT 2D
jpgstat10.m Cimpute statistics and Huffman tables on a base of images
msb.m Most Significant Bit of a decimal number
prtbstr.m Print bit stream
quantify.m Quantization
rlcjpg.m RLC format JPG
stdq.m Weight matrix of JPG standard
zz.m ZigZag reading
bin2dec.m Binary to decimal
dec2bin.m Decimal to binary

Page 3/3

cat_code.m
dct1d.m
dct2d.m
getpgm.m
huff.m
idct1d.m
idct2d.m
jpgstat10.m
msb.m
prtbstr.m
quantify.m
rlcjpg.m
stdq.m
zz.m
bin2dec.m
dec2bin.m

	I Let us play with Matlab
	II Let us play again with Matlab
	III Final coder

