


Chapter 1

Inverse Problems, Ill-posed Problems

1.1. Introduction

In many fields of applied physics, such as optics, radar, heat, spectroscopy, geo-
physics, acoustics, radioastronomy, non-destructive evaluation, biomedical engineer-
ing, instrumentation and imaging in general, we are faced with the problem of
determining the spatial distribution of a scalar or vector quantity – we often talk
about an object – from direct measurements – called an image – or indirect mea-
surements – called projections in the case of tomography, for example – of this
object. Solving such imaging problems can habitually be broken down into three
stages [HER 87, KAK 88]:

– a direct problem where, knowing the object and the observation mechanism,
we establish a mathematical description of the data observed. This model needs to
be accurate enough to provide a correct description of the physical observation phe-
nomenon and yet simple enough to lend itself to subsequent digital processing;

– an instrumentation problem in which the most informative data possible must be
acquired so that the imaging problem can be solved in the best conditions;

– an inverse problem where the object has to be estimated from the preceding
model and data.

Obtaining a good estimate of the object obviously requires these three sub-pro-
blems to be studied in a coordinated way. However, the characteristic that these image
reconstruction or restoration problems have in common is that they are often ill-posed
or ill-conditioned. Higher level problems that are found in computer vision, such as
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image segmentation, optical flow processing and shape reconstruction from shading,
are also inverse problems and suffer from the same difficulties [AND 77, BER 88,
MAR 87]. In the same way, a problem such as spectral analysis, which has similarities
with the Fourier synthesis used in radio-astronomy, for example, and which is not
usually treated as an inverse problem, can gain from being approached this way, as we
will see later.

Schematically, there are two broad communities that are interested in these inverse
problems from a methodological point of view:

– the mathematical physics community, with the seminal works of Phillips,
Twomey and Tikhonov in the 1960s [PHI 62, TIK 63, TWO 62]. Sabatier was one
of the pioneers in France [SAB 78]. A representative journal is Inverse Problems;

– the statistical data processing community, which can be linked to the work of
Franklin in the late 1960s [FRA 70], although the ideas involved – the basis of Wiener
filtering – had been bubbling beneath the surface in many works for several years
[FOS 61]. The Geman brothers gave a major boost to image processing about twenty
years ago [GEM 84] A representative journal is IEEE Transactions on Image Process-
ing.

A very rough distinction can be made between these two communities by saying that
the former deals with the problem in an infinite dimension, with the questions of ex-
istence, uniqueness and stability, which become very complicated for nonlinear direct
problems, and solves it numerically in finite dimensions, while the latter starts with a
problem for which the discretization has already been performed and is not called into
question, and takes advantage of the finite nature of the problem to introduce prior
information built up from probabilistic models.

In this chapter, we propose to use a basic example to point out the difficulties that
arise when we try to solve these inverse problems.

1.2. Basic example

We will now illustrate the basic concepts introduced in this chapter by an artificial
example that mixes the essential characteristics of several types of inverse problems.

We are looking for a spectrum, the square of the modulus of a function �
x(ν), ν ∈ �

but, because of the experimental constraints, we only have access to the dual domain
of the variable ν, through the function x(t) of which �

x(ν) is the Fourier transform
(FT). What is more, imperfections in the apparatus mean that the function x(t) is only
observable as weighted by a “window” h(t), which gives the observable function y(t):

y(t) = h(t)x(t) . (1.1)
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To make our ideas clear, let us think of a visible optical interferometry device like
that by Michelson. To have access to the emission spectrum of the light source, we
measure an energy flux as a function of the phase difference between two optical
paths. The interferogram obtained is, ignoring the additional constant, the Fourier
transform of the function we are looking for but the limitations of the apparatus make
the interferogram observable only in a limited area of space, which is equivalent to its
being modulated by a weighting function h(t). This is assumed to be known but the
experimental data that is actually available is made up of a finite number of regularly-
spaced samples of the function y(t), which inevitably contain measuring errors that
we assume to be additive. If we take a unit sampling step, we can write:

yn = hn xn + bn , n = 1, . . . , N, (1.2)

where yn designates the available data, hn and xn the samples of the functions h(t)
and x(t) respectively, and bn the measurement “noise”. This is a special case of a
system of linear equations of the form:

y = Ax + b (1.3)

that we will find repeatedly throughout this book. Here we have a diagonal matrix A
which, at first glance, appears to be a simple situation.

A first difficulty appears, however, independently of the presence of the weighting
h(t): the discrete nature of the data means that we only have information on �

x1(ν),
ν ∈ [0, 1], a 1-periodic function deduced from �

x(ν) by the periodization due to the
sampling, since we have:

xn =
∫ 1

0

�
x1(ν) exp {2jπνn} dν . (1.4)

The samples xn are in fact the Fourier series development coefficients of �
x1. To have

any hope of accessing �
x, it is necessary for �

x(ν) to have limited support and for the
sampling step to be such that there is no aliasing. Observation model (1.2) can thus be
written indifferently:

yn =
∫ 1

0

�

h �
�
x1(ν) exp {2jπνn} dν + bn , (1.5)

where
�

h(ν) is the FT of h(t). The presence of this convolution core expresses the loss
of resolving power of the instrument due to the weighting by h(t).

A simulated example is presented in Figure 1.1. Signal x(t) is composed of three
sine waves, the spectrum of which is marked by the circles in Figure 1.1a. Two have
frequencies that are close together (relative frequency difference less than 0.008). Re-
sponse

�

h(ν) is a Gaussian of standard deviation σ�
h

= 0.0094 intentionally chosen
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Figure 1.1. (a) Spectrum
�
x of a linear combination of three sine waves, indicated by circles,

and
�
h �

�
x, where

�
h is a Gaussian of standard deviation close to 0.01 in relative frequency;

(b) 128 data points y simulating an interferogram that contains noise and is quantified,
corresponding to model (1.5)

high to point out clearly the difficulties of inversion. The “non-resolved” spectrum
�

h �
�
x is also represented in Figure 1.1a. Figure 1.1b superposes the N = 128 simu-

lated data yn and the series of weighting coefficients hn, which also have a Gaussian
form (of standard deviation 1/2πσ�

h = 17).

A second difficulty comes from the impossibility of inverting equation (1.5) in a
mathematically exact way, i.e., of finding the “true” function �

x1 among other candi-
date functions, even in the absence of noise. Consider, for example, the FT

�

x̂ of a
stable series {x̂n}� such that:

x̂n = yn/hn if n ∈ {1, . . . , N} and hn �= 0 . (1.6)

Since this series is only defined for N values at most, there is an infinite number of
solutions

�

x̂ that satisfy constraints (1.6), and are equivalent considering the data. The
problem is therefore indeterminate. In this respect, the periodogram of the data:

Γ(ν) Δ=
1
N

∣∣∣∣∣
N∑

n=1

yn exp {−2jπνn}
∣∣∣∣∣
2

, ν ∈ [0, 1] , (1.7)

calculable by fast discrete FT on a fine, regularly spaced grid, is a particular solution
for hn close to 1 (i.e.,

�

h close to a Dirac). It is obtained by extending x̂n = yn with
zeros on either side of the observation window.

The small number of data points and the spread of the instrument response
�

h give
the periodogram very low resolving power (see Figure 1.2a, curve (P1)). We can try to
get around the need to have

�

h by calculating the periodogram associated with yn/hn
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or, in other words, by making a spectral estimator
�

x̂ from a time series extrapolating
yn/hn with zeros. It is also worth noting that this is none other than the trivial solution
to the problem of finding a series {xn}� that is stable and has a minimal norm, and
which minimizes the least squares criterion – even reducing it to zero in this case:

N∑
n=1

(yn − hn xn)2 .

The result is disappointing (see Figure 1.2a, curve (P2)). In fact, this is not really
surprising as the series yn/hn contains aberrant values at its extremities because of
the measurement noise and quantification. These error terms, which are amplified by
1/hn when hn is small, make a contribution to the estimated spectrum that completely
masks the peaks of the theoretical spectrum.
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Figure 1.2. (a) Curve (P1) is the periodogram of the data yn represented in dB; the lack of
resolution is a result of the lack of data but also of the spread response of the instrument.

Curve (P2) is the periodogram associated with yn/hn; (b) spectral estimate obtained as the
minimizer of criterion (1.8), calculated by approximation on a discrete grid of 1,024 points,

for “well chosen” values of λ and τ

These negative results could lead us to think that the data is too poor to be used.
This is not the case, as shown by the spectral estimate whose modulus is represented
in Figure 1.2b, and which is obtained as the function �

x that minimizes the regularized
criterion:

N∑
n=1

(yn − hn xn)2 + λ

∫ 1

0

√
τ2 + |�x(ν)|2 dν , (1.8)

where xn is connected to �
x by (1.4) for “well chosen” values of hyperparameters λ

and τ . As the FT �
x is discretized on 1,024 points, this process is strictly equivalent

to extrapolating the series of 128 observed xn by 896 values that are not necessarily
zero, unlike in the periodogram.

This example is typical of the difficulties that arise in the solving of numerous in-
verse problems [AND 77, BER 88, HER 87]. Certain conventional signal processing
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tools prove to be unsuitable whereas others provide qualitatively and quantitatively
exploitable solutions. The improvement obtained with this regularized criterion (1.8)
is striking and several questions immediately come to mind: why do we need to pe-
nalize the least squares criterion in this way? How do we obtain the argument of the
minimum of such a criterion? How do we choose the values of the hyperparameters
that are part of it? It can be said that the main part of this book is devoted to just that:
the construction and use of regularized criteria. However, it is important to under-
stand the nature of the difficulties encountered during inversion before studying the
regularized solutions that allow them to be solved.

1.3. Ill-posed problem

The aim of this section is to correct the false impression that the difficulties en-
countered in solving an inverse problem come from the discrete nature of the data and
its finite amount and that, if we had access to a continuum of values, i.e., the function
y(t) in the example above, everything would be fine. Often unsuspected difficulties
are already present at this level. They are proper to problems known as ill-posed prob-
lems. When the problem is inevitably discretized as in the previous example, some
of these difficulties paradoxically disappear, but the problem most often remains ill-
conditioned.

Hadamard has defined three conditions for a mathematical problem to be well-
posed [AND 80, HAD 01, NAS 81, TIK 77] (by default, it will be called ill-posed):

(a) for each item of data y in a defined class Y, there exists a solution x in a stipulated
class X (existence);

(b) the solution is unique in X (uniqueness);
(c) the dependence of x on y is continuous, i.e., when the error δy on data item y

tends towards zero, the error δx induced on the solution x also tends towards zero
(continuity).

The continuity requirement is connected to that of stability or robustness of the so-
lution (with respect to the errors that inevitably occur on the data). Continuity is,
however, a necessary but not a sufficient condition for robustness [COU 62]. A well-
posed problem can be ill-conditioned, which makes its solution non-robust, as we shall
see in section 1.5.

All the traditional problems of mathematical physics, such as the Dirichlet problem
for elliptical equations or the Cauchy problem for hyperbolic equations, are well-
posed in Hadamard’s sense [AND 80]. However, the “inverse” problems obtained
from “direct” problems by exchanging the roles of the solution and data are generally
not well-posed.
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The example of section 1.2 clearly comes into this category of ill-posed problems
since, with a finite number of discrete data items, a solution �

x(ν) exists, but it is not
unique. It is interesting to note that this same problem, before discretization, is a
special case of the general problem of solving a Fredholm integral equation of the first
kind:

y(s) =
∫
k(s, r)x(r) dr , (1.9)

where y(s), x(r) and k(s, r) are replaced by y(t), �
x(ν) and h(t) exp {2jπνt} re-

spectively. Later in this book we will find the same type of integral equations for other
forms of kernel k(s, r), for deconvolution, tomographic reconstruction and Fourier
synthesis.

As the data is uncertain or noisy, we cannot hope to solve this equation exactly and
the solution needs to be approached from a certain direction. The concept of distance
between functions is thus a natural way of evaluating the quality of an approximation,
which explains why x and y are often assumed to belong to Hilbert spaces. Problem
(1.9) can thus be rewritten as:

y = Ax , x ∈ X , y ∈ Y, (1.10)

where x and y are now elements of functional spaces of infinite dimension X and Y,
respectively, and where A: X → Y is the linear operator corresponding to (1.9). The
necessary and sufficient conditions for the existence, uniqueness and continuity of the
solution can thus be written respectively [NAS 81]:

Y = ImA , KerA = {0} , ImA = ImA , (1.11)

where ImA is the image of A (i.e., the set of y that are images of an x ∈ X ), KerA
its kernel (i.e., the set of solutions to the equation Ax = 0) and ImA the closure of
ImA [BRE 83].

The manner in which conditions (1.11) are stated gives rise to several comments.
On the one hand, Y = ImA implies ImA = ImA (a Hilbert space is closed upon
itself). In other words, the very existence of a solution to problem (1.9) ∀ y ∈ Y
implies the continuity of this solution. In contrast, if the existence condition Y =
ImA is not verified, the continuity condition seems to become pointless; in fact, it
applies to pseudo-solutions, which will be defined in section 1.4.1 as minimizing the
norm ‖Ax− y‖Y (without systematically reducing it to zero).

1.3.1. Case of discrete data

When the data is discrete, y is a vector of dimension N in a Euclidian space.
Ignoring errors on the data, a linear inverse problem with discrete data can be stated
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as follows. Given a set {Fn(x)}N
n=1 of linear functionals defined on X and a set

{yn}N
n=1 of numbers, find a function x ∈ X such that:

yn = Fn(x) , n = 1, . . . , N.

In particular, when functionalsFn are continuous onX,Riesz theorem [BRE 83] states
that functions ψ1, . . . , ψN exist such that:

Fn(x) = 〈x, ψn〉X ,

where the notation 〈· , ·〉X designates the scalar product used in space X. The example
of equation (1.9) takes this form when y(s) is measured on a finite number of points
s1, . . . , sN , and X is an L2 space. In this case we have:

ψn(r) = k(sn, r) .

This problem is a particular case of that of equation (1.10) if we define an operator A
of X in Y by the relation:

(Ax)n = 〈x, ψn〉X n = 1, . . . , N.

Operator A is not injective: KerA is the closed subspace of infinite dimension of all
the functions x orthogonal to the subspace engendered by the functions ψn. Con-
versely, the image of A, ImA is closed: ImA is simply Y when the functions ψn are
linearly independent; otherwise it is a subspace of dimension N ′ < N . We thus see
clearly why the example of section 1.2 is an ill-posed problem: the difficulty does not
lie in a lack of continuity but in a lack of uniqueness.

1.3.2. Continuous case

Let us now assume that x and y belong to the same Hilbert space and that k is
square integrable, a condition fulfilled by many imaging systems – it would be the
situation if our example of section 1.2 was modified so that the function �

y(ν) =
�

h �
�
x1(ν) was continuously observed. The direct problem is thus well-posed: a small
error δx on the data entails a small error δy on the solution. This condition is not,
however, fulfilled in the corresponding inverse problem, where it is object x that must
be calculated from response y: x = A−1 y. In fact, when kernel k is square integrable
– which would be the case for a Gaussian kernel in our example – the Riesz-Fréchet
theorem indicates that operator A is bounded and compact [BRE 83]. However, the
image of a compact operator is not closed (except in the degenerate case where its
dimension is finite). This signifies that the inverse operator A−1 is not bounded, or
stable, its image is not closed and the third of Hadamard’s conditions is not satisfied
for the inverse problem [NAS 81].
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To get a better grasp of these abstract ideas, it is handy to use the spectral properties
of compact operators in Hilbert spaces. The most remarkable property of these oper-
ators is that they can be decomposed into singular values, like matrices (the famous
singular value decomposition, or SVD). The singular system of a compact operator is
defined as the set of solutions of the coupled equations:

Aun = σn vn and A∗ vn = σn un , (1.12)

where the singular values σn are positive numbers, where the singular functions un

and vn are elements of X and Y respectively, and where A∗ is the adjoint operator of
A, which exists sinceA is continuous and therefore such that: 〈Ax, y〉Y = 〈x,A∗ y〉X
for any x ∈ X and y ∈ Y 1.

When A is compact, it always possesses a singular system {un, vn; σn} with the
following properties [NAS 81]:

– σn being ordered and counted with their multiplicity (which is finite):
σ1 ≥ σ2 ≥ . . . ≥ σn ≥ . . . 0, σn tends towards 0 when n → ∞ and either the
limit is reached for n = n0 (in which case operator A is degenerate), or it is not
reached for any finite value of n;

– functions un form an orthonormal basis of (KerA)⊥, the orthogonal comple-
ment of KerA in the decomposition: X = KerA ⊕ (KerA)⊥ and the functions
vn form an orthonormal basis of (Ker (A∗))⊥, i.e., ImA, orthogonal complement of
Ker (A∗) in the decomposition Y = Ker (A∗)⊕ (Ker (A∗))⊥.

Let E ⊆ � be the set of indices n such that σn �= 0. The Picard criterion [NAS 81]
ensures that a function y ∈ Y is in ImA if and only if:

y ∈ (Ker (A∗))⊥ and
∑
n∈E

σ−2
n 〈y, vn〉2 < +∞ . (1.13)

For the second condition (1.13) to be satisfied, it is necessary, when operator A is
not degenerate (E ≡ �), for the components 〈y, un〉 of the development of image
y on the set of eigenfunctions {vn} to tend towards zero faster than the eigenvalues
σ2

n when n → ∞. This strict condition has no reason to be satisfied by an arbitrary
function of (Ker (A∗))⊥. Note, however, that it is naturally satisfied if y = Ax is the
perfect image resulting from an object x of finite energy. The solution is thus written:

x =
∑
n∈E

σ−1
n 〈y, vn〉 un . (1.14)

1. Note that the self-adjoint operator A∗A, which appears in the symmetrized problem A∗ y =
A∗A x, verifies: A∗A vn = σ2

n vn. It is thus defined as non-negative since its eigenvalues are
σ2

n (which are also those of A A∗). This property will be used in section 2.1.1.
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However, this solution, when it exists, is unstable: a small additive perturbation
δy = ε vN , for example, on the perfect data y leads to a perturbation δx on the solution
calculated with the data y + δy:

δx = σ−1
N 〈δy, vN 〉 uN = σ−1

N ε uN . (1.15)

The ratio ‖δx‖ / ‖δy‖ equals σ−1
N , which can be arbitrarily large. The inverse linear

operator A−1 : Y → X , defined by (1.14), is thus not bounded as it is not possible to
find a constant C such that, for all y ∈ Y , we have ‖A−1y‖X ≤ C ‖y‖Y , which is a
necessary and sufficient condition for A−1 to be continuous [BRE 83]. The ill-posed
nature of the problem stems this time from the lack of continuity and not from the lack
of uniqueness.

The need for a deeper understanding of these problems that are not mathematically
well-posed but are of great interest in engineering sciences is at the origin of two recent
branches of analysis: generalized inversion theory [NAS 76], which is summarized
below, and regularization theory, which will be the subject of the next chapter.

1.4. Generalized inversion

Let us suppose that the equation Ax = 0 has non-trivial solutions. The set
KerA �= {0} of these solutions is a closed subspace of X. It is the set of “invisi-
ble objects” as they produce an image y that is zero. Let us also suppose that ImA is a
closed subspace of Y. An example is provided by the integral operator corresponding
to an ideal low-pass filter of cut-off pulsation Ω [BER 87]:

(Ax)(r) =
∫ +∞

−∞

sinΩ(r − r′)
π(r − r′)

x(r′) dr′ . (1.16)

If we choose X = Y = L2
�

, the kernel is the set of all the functions x whose FT
is zero in the band [−Ω,+Ω], while the image of A is the set of functions having a
limited band in the same interval, which is a closed subspace of L2

�
.

A means of re-establishing the existence and the uniqueness of the solution in the
above conditions is to redefine both the space X of the solutions and the space Y of
the data. If we choose a new space X ′ which is the set of all the functions orthogonal
to KerA (in the case of equation (1.16), X ′ is the set of functions with summable
squares and band limited to the interval [−Ω,+Ω]), and if y is restrained to a new
data space Y ′ = ImA (which is, once again, in the case of equation (1.16), the set of
functions with summable squares and band limited to the interval [−Ω,+Ω]), thus, for
any y ∈ Y ′, there exists a unique x ∈ X ′ such that Ax = y (in our example (1.16),
the solution is even trivial: x = y) and the new problem is thus well-posed.

It is often possible to choose the spaces X and Y so that the problem becomes
well-posed but the practical interest of the choice is limited because it is generally the
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intended application that imposes the appropriate spaces. Another means that could
be envisaged is to change the notion of a solution itself.

1.4.1. Pseudo-solutions

Let us first consider the case whereA is injective (KerA = {0}) but not surjective
(ImA �= Y). The set of functions x that are solutions of the variational problem:

x ∈ X minimizes ‖Ax− y‖Y , (1.17)

where ‖·‖Y designates the norm in Y, are called pseudosolutions or least squares so-
lutions of the problem (1.10). If ImA is closed, (1.17) always has a solution, but it is
not unique if the kernel KerA is not trivial. When it is, as we assume here, it can be
said that the well-posed character has been restored by reformulating the problem in
the form (1.17).

By making the first variation of the function minimized in (1.17) zero, we obtain
Euler’s equation:

A∗Ax = A∗y , (1.18)

which brings in the self-adjoint operator A∗A, the eigensystem of which can be de-
duced from the singular system of A.

1.4.2. Generalized solutions

Let us now consider the case where the uniqueness condition is not satisfied
(KerA �= {0}, the problem is indeterminate). The set of solutions of (1.18) being
a convex, closed subset of X, it contains a single element with a minimal norm, noted
x† or x̂GI and called the generalized solution of (1.10). As x† is orthogonal to KerA,
this way of defining the solution is equivalent to choosing X ′ = (KerA)⊥. In other
words, the generalized solution is a least squares solution having the minimal norm
among these solutions. As there is a single x† for every y ∈ Y , a linear application
A† of Y in X is defined by:

A†y = x† = x̂GI . (1.19)

The operatorA† is called the generalized inverse of A and is continuous [NAS 76].

1.4.3. Example

To illustrate the idea of generalized inversion, let us go back to our example of
section 1.2 and, first of all, neglect the weighting h(t). To impose a unique solution in
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the class of possible solutions prolonging the series of known xn, we can choose the
generalized inverse solution of the initial problem (1.10):

�

x̂GI(ν) = argmin
�x1∈L2

�
[0,1]

∫ 1

0

|�x1(ν)|2 dν subject to (s. t.) xn = yn, n = 1, . . . , N.

The Plancherel and Parseval relations show us that this is equivalent to finding coeffi-
cients:

x̂n =
∫ 1

0

�

x̂(ν) exp {2jπnν} dν , n ∈ � ,

such that:

x̂ = arg min
x∈�2

�

∑
n∈�

|xn|2, s. t. xn = yn , n = 1, . . . , N.

The solution is trivial since the problem is separable:

x̂n =
{
yn if n ∈ {1, 2, . . . , N},
0 otherwise, =⇒ �

x̂GI(ν) =
N∑

n=1

yn e
−2jπnν , (1.20)

whose squared modulus, with just the difference of a coefficient, gives the Schuster
periodogram of equation (1.7). The case of weighting by h(t) is treated in the same
way, by replacing yn by yn/hn. It can thus be seen that the periodogram is the gen-
eralized inverse solution of a spectral analysis problem that is ill-posed because the
number of data points is finite.

1.5. Discretization and conditioning

A first description of a direct problem often brings in functions of real variables
(time, frequency, space variables, etc.), representing the physical quantities involved:
quantities accessible for measurement and quantities of interest that are unknown. The
analysis of the problem at this level of description has provided an explanation for the
difficulties that arise during inversion, by situating us in functional spaces of infinite
dimension. We have thus seen that, in the case of a direct problem described by an
integral equation of the first kind, the inversion is often an ill-posed problem as it is
unstable.

This analysis is, however, insufficient. The available experimental data are almost
always composed of measurements of physical quantities accessible at a necessarily
finite number of points in the domain of definition of their variables. They are thus
naturally discrete and we group them together in the vector y as we did in section 1.4
above. However, the unknown object is also discretized, either right from the start,
or during the process of solution (as in the example of the periodogram above), by
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decomposition over a finite number of functions. If these are basic elements of the
space to which the object belongs, the decomposition is necessarily truncated. In
imaging, for example, in the vast majority of cases, pixel indicators or cardinal sines
are used as basic functions, according to whether the object is implicitly assumed
to have a limited support or a limited spectrum. Basic wavelets or wavelet packets
are also coming into use [STA 02, KAL 03]. The starting point is thus composed
of a model parametrized by the vector x of the decomposition coefficients, in other
words by a set of exclusive hypotheses, each of which is indexed by the value of the
coefficients. This hypothesis space is thus the set of possible values of these unknown
parameters, H = {xi}. The choice of these basic functions obviously forms part of
the inversion problem, even if it is not often touched upon.

In the discrete case (or more exactly the “discrete-discrete” case), the problem
changes noticeably as x and y belong to spaces of finite dimensions and the linear
operator A becomes a matrix A. Equation (1.10) has a unique solution with min-
imal norm x̂GI = A†y which depends continuously on y since the generalized in-
verse A† is then always bounded [NAS 76]. The problem is thus always well-posed
in Hadamard’s sense. However, even in this framework, the inversion problem still
has an unstable nature, this time from a numerical point of view. The spectral de-
composition (1.15) is still valid, the only difference being that the number of singular
values of matrix A is now finite. These singular values can rarely be calculated explic-
itly [KLE 80]. From this point of view, the example in section 1.2 is not representative
because, if we choose to decompose the solution over M > N complex exponentials
of the Fourier basis:

�
x(ν) =

M∑
m=1

xm exp {−2jπmν} ,

model (1.2) can be written y = Ax + b in a matrix-vector notation, where A is a
rectangular N ×M matrix composed of the diagonal matrix diag {hn}, juxtaposed
with the zero matrix of size N × (M − N). Its singular values are thus σn = hn

for n = 1, 2, . . . , N and σn = 0 otherwise. Even if we exclude all the zero singular
values, as by using A†, there are always some singular values close to zero with the
weighting h(t) of our example. Matrix A is thus ill-conditioned. The coefficients
σ−1

n 〈δy,un〉 in equation (1.15) become very large for the σn that are close to zero,
even if δy is small.

Generally speaking, whether we have the discrete case or not, let us assume that
ImA is closed so that the generalized inverse A† exists ∀ y ∈ Y (and is continuous).
Let us designate an error on the data y as δy and the error induced on the generalized
inverse solution x† as δx†. The linearity of (1.19) leads to δx† = A†δy, which implies

‖δx†‖X ≤ ‖A†‖ ‖δy‖Y ,
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where ‖A†‖ designates the norm of the continuous operator A†, that is to say the
quantity: supy∈Y ‖A†y‖X/ ‖y‖Y [BRE 83]. In a similar way, (1.10) implies:

‖y‖Y ≤ ‖A‖ ‖x†‖X ,

where ‖A‖ = supx∈X ‖Ax‖Y / ‖x‖X . By combining these two relations, we obtain
the inequality:

‖δx†‖X
‖x†‖X ≤ ‖A‖ ‖A†‖ ‖δy‖Y‖y‖Y

. (1.21)

It is important to note that this inequality is precise in a certain sense. When A is a
matrix of dimensions (N ×M) or corresponds to an inverse problem with discrete
data, the inequality can become an equality for certain (y, δy) pairs. When A is an
operator on spaces of infinite dimension, it can only be established that the left hand
side of inequality (1.21) can be arbitrarily close to the right hand side. The quantity:

c = ‖A‖ ‖A†‖ ≥ 1 (1.22)

is called the condition number of the problem. When c is close to one, the problem
is said to be well-conditioned, whereas when it is considerably larger than one, the
problem is said to be ill-conditioned.

In practice, it is useful to have an estimate of the condition number, which gives
an idea of the numerical stability of the problem. When A = A is a matrix of di-
mensions (N ×M), ‖A‖ is the square root of the largest of the eigenvalues of the
positive semidefinite symmetric matrix A∗A, of dimensions (M ×M) (the positive
eigenvalues of this matrix coincide with those of the matrix AA∗) and ‖A†‖ is the
inverse of the square root of the smallest of these eigenvalues:

c =
√
λmax/λmin .

In our example in section 1.2, we obtain c = |h|max/|h|min and we understand why the
weighting by h(t) can degrade the conditioning of the generalized inversion problem
which is otherwise well-posed.

1.6. Conclusion

To sum up the above, when we have a simple situation where we are dealing with
a direct, linear problem in an infinite dimension, bringing in an operator A : X → Y
defined in the Hilbert spaces X and Y, we have three main situations:

– if A is continuous and injective (the only solution to the equation Ax = 0 is
the trivial solution x = 0, thus KerA = {0}) and its image is closed and given by
ImA = Y , the inverse problem is well-posed, since the inverse operator is continuous;
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– ifA is not injective, but ImA is closed, then, if we look for a pseudosolution, the
inverse problem becomes well-posed in as far as the generalized inverse is continuous;

– if the image ImA is not closed, using a pseudo-solution cannot, in itself, guar-
antee the existence and the continuity of the inverse solution.

When we are dealing with a linear operator defined in spaces of finite dimension
�N and�M and of the type A : �M → �N, we again have three main situations:

– if p is the rank of the matrix associated with the operator A and if p = N = M ,
then A is bijective. A solution always exists, it is unique, and the inverse problem is
well defined;

– if p < M , then the uniqueness is not certain but can be established by consider-
ing a generalized inversion;

– if p < N , then the existence is not certain for any given data but can be ensured
by again considering a generalized inversion.

To conclude this chapter, we see that an inverse problem is often ill-posed or ill-
conditioned, and that generalized inversion does not, in general, provide a satisfactory
solution. In the next chapter we will see that another development of modern analysis,
regularization, allows us to get around these difficulties and gives a generic framework
for inversion.
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Chapter 2

Main Approaches to the Regularization of
Ill-posed Problems

In the previous chapter, we saw that, when the image ImA of a linear operator we
want to invert is not closed, then the inverseA−1, or the generalized inverseA†, is not
defined everywhere in the data space Y and is not continuous. This is the case, for
example, of compact, non-degenerate (or non-finite rank) operators and it is easy to
see that the condition number of the problem is infinite. Suitable solving techniques
are thus required.

We also saw that, in a finite dimension, the inverse or the generalized inverse is
always continuous. In consequence, the use of a generalized inversion is sufficient
to guarantee that the problem is well posed in this case. However, it must not be
forgotten that a problem that is well posed but severely ill-conditioned behaves in
practice like an ill-posed problem and has to be treated with the same regularization
methods, which we present below.

2.1. Regularization

In a finite or infinite dimension, a regularizer of equation (1.10) y = Ax is a family
of operators {Rα; α ∈ Λ} such that [NAS 81, TIK 63]:{

∀α ∈ Λ, Rα is a continuous operator of Y in X ;
∀ y ∈ ImA, limα→0Rα y = A†y.

(2.1)

Chapter written by Guy DEMOMENT and Jérôme IDIER.
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In other words, since the inverse operator A−1 does not have the required continuity
or stability properties, we construct a family of continuous operators, indexed by a
regulating parameter α (called the regularization coefficient) and including A† as a
limit case. Applied to perfect data y, Rα gives an approximation of x† that is all the
better as α → 0. However, when Rα is applied to data yε = Ax + b that inevitably
contain noise, b, we obtain an approximate solution xε = Rα yε and we have:

Rα yε = Rα y +Rα b . (2.2)

The second term diverges when α → 0. It follows that a trade-off has to be made
between two opposing terms, the approximation error (first term) and the error due
to noise (second term). This can be done, within a given family of operators Rα, by
adjusting the value of the coefficient of regularization α.

Most of the methods that have been put forward for solving and stabilizing ill-
posed problems in the past 30 years fall into this general scheme in one way or another.
They can be divided into two broad families: those that proceed by dimensionality
control – Λ is thus a discrete set – and those that work by minimization of a composite
criterion or by optimization under constraint – Λ is thus�+. In what follows, we will
mainly concern ourselves with the second family of regularization methods.

2.1.1. Dimensionality control

In the case of an ill-posed or ill-conditioned problem, the methods of regularization
by dimensionality control get around the difficulty in two ways:

– by minimizing the criterion ‖y −Ax‖ (or, more generally, G(y − Ax)) in a
subspace of reduced dimension, after an appropriate change of basis if necessary;

– by minimizing the criterion G(y − Ax) in the space initially chosen but by an
iterative method in which the number of iterations is limited.

2.1.1.1. Truncated singular value decomposition

A typical example of methods of the first family can be found by examining equa-
tion (1.15): to suppress the ill-conditioned nature of the problem, we just truncate
the development, keeping the components corresponding to singular values that are
large enough for error terms of the form σ−1

n 〈δy, vn〉un to remain small. This is
truncated singular value decomposition, or TSVD [AND 77, NAS 81]. It is very ef-
fective for ensuring numerical stability. However, the problem arises of choosing the
truncation order, which plays the role, here, of the inverse of a regularization coeffi-
cient. However, the main failing of this approach is that we give up the possibility of
re-establishing the spectral components that have been too degraded by the imaging
device. As for the definition of the Rayleigh resolution criterion in optics, we use no
information about the object sought other than the fact that its energy is finite although,
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most of the time, we know that it is, for example, positive, or that it contains regions of
smooth spatial variation separated by sharp boundaries, or that it has bounded values,
or bounded support, etc. If we want to go beyond Rayleigh resolution, it is indispens-
able to be able to take this type of prior information into account.

2.1.1.2. Change of discretization

In truncated singular value decomposition, it is the imaging device that more or
less imposes the discretization through singular functions of the corresponding op-
erator. However, we can also avoid the difficulties raised by the poor condition-
ing of matrix A, as a consequence of the object’s being descretized on a Cartesian
grid for example, by choosing a parsimonious parameterization of the object bet-
ter suited to its prior properties. This is what wavelet-based decomposition meth-
ods [STA 02, KAL 03] do, for example. The principle remains the same: thresholding
is applied to the coefficients of the decomposition so as to eliminate the subspace
dominated by the noise components.

This mode of discretization solves the problem of stability or poor conditioning an-
alyzed above but, even so, does not always provide a satisfactory solution. Everything
depends on the decomposition that is chosen.

2.1.1.3. Iterative methods

A very popular family of methods is made up of iterative methods of the form:

x(n+1) = x(n) + α (y −Ax(n)) , n = 0, 1, . . . (2.3)

where 0 < α < 2/ ‖A‖ (Bialy’s method [BIA 59]). If A is a non-negative, bounded,
linear operator (i.e., 〈Ax, x〉 ≥ 0, ∀x ∈ X ) and if y = Ax has at least one solution,
then the series of x(n) converges and:

lim
n→∞ x(n) = P x(0) + x̂GI,

whereP is the orthogonal projection operator on KerA and x̂GI the generalized inverse
solution. In fact, this method looks for the fixed point of the operator G : Gx =
αy+ (I −αA)x, but if A is compact and X is of infinite dimension, then I −αA is
not a contraction and the method diverges. Moreover, we have also seen that, even in
finite dimensions, the generalized inverse solution is often dominated by the noise.

The non-negativity condition excludes a lot of operators but the method can be
applied to solve the normal equation A∗y = A∗Ax since A∗A is a non-negative
operator. We thus obtain Landweber’s method [LAN 51]:

x(n+1) = x(n) + αA∗ (y −Ax(n)) , n = 0, 1, . . . (2.4)

with 0 < α < 2/ ‖A∗A‖. The well known Gerchberg-Saxton-Papoulis-VanCittert
[BUR 31] method for extrapolating a limited-spectrum signal is a special case of the
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Bialy-Landweber method. It is in this same category of iterative methods that we can
place Lucy’s method [LUC 74], which is very popular in astronomy.

All these methods can provide an acceptable solution only on the condition that the
number of iterations is limited (which plays the role of the inverse of a regularization
coefficient) [DIA 70]. This is often done empirically, as the initial framework does not
take observation noise into account and a theory regulating the number of iterations so
as to limit noise amplification cannot but be heteronomous [LUC 94]. This explains
why the rest of this book will focus on regularization methods of the second family,
which operate by minimization under constraint and are, from this point of view, more
autonomous.

2.1.2. Minimization of a composite criterion

The principal characteristic of the regularization methods of this second large fam-
ily is to require the solution to be a trade-off between fidelity to the measured data and
fidelity to the prior information [TIT 85]. This trade-off is reached using a single
optimality criterion. The approach can be interpreted as follows.

The least squares solutions to equation (1.17) minimize the energy of the discrep-
ancy between the model Ax and the data y. In this sense, they achieve the greatest
fidelity to the data. However, when the observation noise is broadband, relation (1.15)
shows that the high spatial frequency components of the restored or reconstructed ob-
ject have large amplitudes because of noise amplification. The least squares solutions
thus prove unacceptable because we expect the real object to have markedly smoother
spatial variations. We therefore need to introduce a little infidelity to the data to obtain
a solution that is smoother than the least squares solution and closer to the idea that
we have a priori. A widely accepted means of doing this is by the minimization of a
composite criterion [NAS 81, TIK 63, TIK 77]. The basic idea is to give up any hope
of reaching the exact solution from imperfect data, to consider as admissible any solu-
tion for whichAx is not far from y, and to look among the admissible solutions to find
the one that can be considered as the physically most reasonable, i.e., compatible with
certain prior information. This is usually done by finding a solution xα that minimizes
a criterion of the form:

J (x) = G(y −Ax) + αF(x) , 0 < α < +∞ , (2.5)

specifically designed so that:

– certain desirable properties that sum up our prior knowledge about the solution
are reinforced (second term).

The choice of the functionals F and G is qualitative and determines how the
regularization is carried out. Conversely, the choice of α, which is the coefficient

– the solution is faithful to the data up to a certain point (first term of the criterion);
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of regularization here, is quantitative and allows the compromise between the two
sources of information to be adjusted. Perfect fidelity to the data is obtained with
α = 0, while perfect fidelity to the prior information is obtained if α = ∞.

One of the most widely studied regularization methods is obtained by minimizing
the functional:

J (x) = ‖y −Ax‖2
Y + α ‖Cx‖2

X , (2.6)

where C is a constraint operator [NAS 76]. The existence of a solution is ensured
when C is bounded with ImC, for example, but that excludes the very interesting
case of a differential operator, as in Tikhonov’s seminal article [TIK 63]:

‖Cx‖2
X =

P∑
p=0

∫
cp(r)

∣∣x(p)(r)
∣∣2 dr ,

where the weighting functions cp(r) are strictly positive and x(p) designates the pth
order derivative of x. The corresponding regularizer can be written:

Rα = (A∗A+ αC∗C)−1A∗. (2.7)

In this case, xα = Rα y exists and is unique when the domain of C is dense in X and
the equations Ax = 0 and Cx = 0 only have in common the trivial solution x = 0.
This solution takes a very simple form when A is compact and C = I , the identity
operator in X . By using the singular value decomposition of A of section 1.3, we
obtain:

xα =
∑
n∈E

σn

σn + α

1
σn

〈y, vn〉 un . (2.8)

It is thus essentially a “filtered” version of the non-regularized solution (1.14), or
generalized inverse, of equation (1.10). We will often find this idea of linear filtering
later, associated with the oldest regularization methods, but, for the moment, we will
concern ourselves mainly with discrete problems in finite dimensions.

In the discrete case, the literature on the subject is dominated by a few functionals.

2.1.2.1. Euclidian distances

The squared Euclidian distance between two objects x1 and x2 is defined by:

‖x1 − x2‖2P = (x1 − x2)T P(x1 − x2) ,

where P is a symmetric positive semi-definite matrix, chosen to express certain de-
sirable characteristics of the proximity measurement. Such a squared distance is the

Below are the ones most frequently found [TIT 85].
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habitual choice for G in the case where the noise b is assumed to be zero-mean, Gaus-
sian, independent of x, and of probability density:

p(b) ∝ exp
{
−1

2
bT P b

}
, (2.9)

i.e., of covariance matrix P−1. Such a distance is also very often used for F in order
to penalize objects x of large amplitude.

Applied to the interferometry example of Chapter 1 (which, we recall, is continu-
ous-discrete), this mode of regularization leads us to look for:

�

x̂(α) = argmin
�x∈L2

�
[0,1]

(
‖xN − y‖2 + α

∫ 1

0

|�x(ν)|2 dν
)
,

where xN = [x1, . . . , xN ]T and xk =
∫ 1

0

�
x(ν) exp {2jπkν} dν. The solution reads:

�

x̂(α)(ν) = 1
α+ 1

�

x̂GI(ν) .

The spectrum thus regularized is therefore proportional to the periodogram (1.7) that
is obtained as a limit case (α → 0). Hence, this type of regularization is not suitable
in this example.

However, we will see that the linear-quadratic framework above (that combines the
linear nature of the direct model (1.3) and the quadratic nature of the functionals F
and G) turns out to be very handy in practice. The minimization of a criterion such as:

J (x) = ‖y −Ax‖2P + α ‖x− x‖2Q , (2.10)

where x is a default solution (it is the solution obtained when α → ∞, i.e., when the
weight given to the data tends towards zero), provides an explicit expression of the
minimizer:

x̂ = (AT PA + αQ)−1(AT Py −Qx) (2.11)
which, thanks to the matrix inversion lemma [SCH 17, SCH 18], can be written:

x̂ = x + Q−1 AT (AQ−1 AT + α−1 P−1)−1 (y −Ax) . (2.12)

In this expression, the matrix to be inverted has, in general, different dimensions from
that of (2.11).

2.1.2.2. Roughness measures

A very simple way of measuring the roughness of an image is to apply an ap-
propriate difference operator and then calculate the Euclidian norm of the result. As
the differentiation operation is linear with respect to the original image, the resulting
measure of roughness is quadratic:

F(x) = ‖∇k(x)‖2 = ‖Dkx‖2 . (2.13)

The order k of the difference operator ∇k is habitually 1 or 2. Measure (2.13) is
minimum when x is constant (k = 1), affine (k = 2), etc.
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2.1.2.3. Non-quadratic penalization

Another way of preserving the discontinuities in an object, better than the reg-
ularization methods using quadratic criteria, is to use non-quadratic penalty func-
tions [IDI 99]. This is precisely what was done to process the interferometry data of
Chapter 1, section 1.2, by finally choosing criterion (1.8). The principle is to use a
function that increases more slowly than a parabola so as to apply smaller penalties to
large variations. These functions are of two main types:

– L2L1 functions, i.e., continuously differentiable, convex functions that behave
quadratically at the origin and are asymptotically linear. A typical example is the
branch of a hyperbola;

– L2L0 functions, which differ from the previous ones by being asymptotically
constant and thus non-convex.

This time, it is no longer possible to obtain an explicit solution but the first func-
tions have the advantage of being convex, so the standard minimization techniques
are sure to converge to the global minimum and give some robustness to the solu-
tion [BOU 93]. The others enable the discontinuities to be effectively detected but at
the expense of some instability and high computing costs [GEM 92].

2.1.2.4. Kullback pseudo-distance

In many image processing problems, it is essential to preserve the positivity of
the pixel intensities. One way of doing this is to consider that the positive object
can be identified, after normalization, with a probability distribution, and then to use
the distance measures between probability laws. In particular, the Kullback pseudo-
distance (or divergence, or information) of a probability π with respect to a probability
π0 (such that π is absolutely continuous with respect to π0) can be written:

K(π0, π) =
∫ (

− log
dπ

dπ0

)
dπ0.

For a reference object whose componentsmj are positive,

F(x) = K(x,m) =
M∑

j=1

xj log
xj

mj
(2.14)

is often used. Here again, it is not possible to obtain an explicit expression for the
solution; it has to be calculated iteratively [LEB 99].

Criterion (2.5) sums up a view of regularization that can be called deterministic,
since the only probability law used is, at least implicitly though the choice of the func-
tional G, the one for noise. It has led to important theoretical developments, essentially
in mathematical physics. However, the questions of choice of the regularizing func-
tionalF(x) [CUL 79] and the adjustment of the regularization coefficientα [THO 91]
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are still very open. Section 2.3 presents the principal methods for adjusting the reg-
ularization coefficient that exist in this framework. However, whether we want to set
this hyperparameter by such a supervised method or not, we need to be capable of
minimizing the regularized criterion (2.5) in practice afterwards, as a function of x.
This important aspect of inversion is dealt with below.

2.2. Criterion descent methods

Implicitly or explicitly, most inversion methods are based on the minimization of a
criterion. According to the properties of the latter, the computing cost of the solution
can vary enormously, typically by a factor of a thousand between the minimization of
a quadratic criterion by inversion of a linear system and that of a multimodal criterion
by a relaxation technique such as simulated annealing, everything else being equal.
Finally, the choice of the “right” inversion method depends on the computing facilities
available. And we still need to know which algorithm to use for a given optimization
problem. For instance, in the comparison above, it would be possible, but completely
inefficient, to use simulated annealing to minimize a quadratic criterion. This section
gives a non-exhaustive overview of optimization problems in the context of inverse
problems in signal and image processing, with the associated algorithms. It obviously
cannot replace the literature devoted to optimization as a whole, such as [NOC 99]
or [BER 95].

2.2.1. Criterion minimization for inversion

By criterion minimization, we understand: finding the x̂ that minimizes J (x)
among the elements of X. In the rest of this section, we consider the case of real
vectors1: X ⊂ �M. The criterion J and the set X may depend on the data, and struc-
tural properties (additional terms in the expression forJ expressing “soft” constraints,
whereas the specification of X is likely to impose “hard” constraints), hyperparame-
ters managing the compromise between fidelity to data and regularity.

Thus, in the case of the generalized inverse of section 1.4, J (x) = ‖x‖ and
X =

{
x, AT Ax = AT y

}
is the set of minimizers of ‖y −Ax‖. In the case of the

specification of composite criteria dealt with in section 2.1.2,

J (x) = G(y −Ax) + αF(x), (2.15a)

with X = �M (non-constrained case) (2.15b)

or X = �M
+ (positivity constraint) (2.15c)

1. The case where x is a function (more precisely, the case of a space X of infinite dimension)
poses mathematical difficulties that come under functional analysis.
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Defining x̂ formally as the minimizer of a criterion hides three main levels of difficulty
in terms of implementation. In order of increasing complexity we have:

1 J is quadratic: J = xT Mx−2 vT x+const. andX = �M, or else X is affine:
X =

{
x0 + Bu, u ∈ �P , P < M

}
;

2 J is a differentiable convex function and X = �M or a convex (closed) subset
of�M;

3 J has no known properties.

2.2.2. The quadratic case

In situation 1 , with X = �M assuming M is symmetric and invertible, x̂ is the
solution of the linear system M x̂ = v of dimensionsM×M , which expresses the fact
that the gradient becomes zero, ∇J (x̂) = 0. We have already encountered a similar
expression in (2.11) and we will meet it again in the Gaussian linear probabilistic
framework of Chapter 3.

In the variant constrained to a space X that is affine, we need only to replace x
by its expression in u to get back to the unconstrained minimization of a quadratic
criterion, in�P.

2.2.2.1. Non-iterative techniques

A finite number of operations is sufficient to invert any linear system: of the order
of M3 operations (and M2 memory locations) for an M ×M system. If the normal
matrix M = {mij} has a particular structure, the system inversion cost may decrease.

In signal processing, the stationary nature of a signal is expressed by the Toeplitz
character of the normal matrix (i.e.,mij = μj−i). In image processing using a station-
ary hypothesis, the normal matrix is Toeplitz-block-Toeplitz (i.e., Toeplitz by blocks,
the blocks of sub-matrices themselves being Toeplitz). In both these cases, we find
inversion algorithms costing of the order of M2 operations and M memory locations
(Levinson algorithm) and even fast algorithms using a fast Fourier transform costing
only of the order of M logM operations. The spectral expression for the “Wiener
filter” of Chapter 4 is a special case where “fast” implementation is possible for the
case of a circulant normal matrix (i.e., mij = μj−i mod M ).

The sparse nature of the normal matrix can also be used to good advantage: if
only ML coefficients of M are non-zero, we can hope to decrease the inversion cost
in terms of the number of operations and variables to be stored. For example, if M is
a band matrix (mij = 0 if |j − i| ≥  < M : a band matrix is sparse and L is of the
same order as ), the inversion cost does not exceedM2 operations and M memory
locations. In particular, a normal matrix M = AT A is band if A corresponds to
filtering by a small finite impulse response.
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2.2.2.2. Iterative techniques

If the number of unknowns M is very large (e.g., pixels in image restoration, or
voxels for 3D objects), the memory cost of non-iterative techniques often becomes
prohibitive. It is then preferable to use a fixed point method, iteratively engendering a
series x̂(i) with a limit x̂ = M−1v. All the conventional variants verify J (x̂(i+1)) ≤
J (x̂(i)). Three families can be distinguished.

2.2.2.2.1. “Column-action” algorithms

A single component differs between x̂(i) and x̂(i+1). The M components are
scanned cyclicly during the iterations. This is the principle of the Gauss-Seidel me-
thod, or coordinate descent [BER 95, p. 143], also called ICM (iterative conditional
modes) or ICD (iterative coordinate descent) in image restoration [BES 86, BOU 93].
It can be generalized for blocks of components and is all the more interesting and
partially parallelizable if A is sparse.

2.2.2.2.2. “Row-action” algorithms

A single component of y is taken into account to calculate x̂(i+1) from x̂(i).
The N data are scanned cyclicly during the iterations, which makes this approach
inevitable if the data are too numerous to be processed simultaneously. The alge-
braic reconstruction techniques (ART), long-standing references in medical imaging
by X-ray tomography, follow this principle to minimize the least squares criterion
‖y −Ax‖2 [GIL 72]. They can be generalized to the penalized criterion ‖y −Ax‖2
+α ‖x‖2 [HER 79], can process blocks of data and are all the more interesting and
partially parallelizable if A is sparse.

2.2.2.2.3. “Global” techniques

At each iteration, all the unknowns are updated according to all the data. The
gradient algorithms are prototypes of the global approach:

x̂(i+1) = x̂(i) − λ(x̂(i))∇J (x̂(i)),

with ∇J (x̂(i)) = 2M x̂(i) − 2 v. Note that the Landweber method defined by (2.4)
is in fact a gradient technique minimizing the non-regularized criterion ‖y −Ax‖2.
The conjugate gradient or pseudo-conjugate gradient algorithms are variants that con-
verge more rapidly, in which the successive descent directions combine the previously
calculated gradients to avoid the zigzag trajectory of the simple gradient [PRE 86,
p. 303]. These variants are of first order, thus occupying little memory; they use only
the M first derivatives ∂J /∂xm. The preconditioning technique can further increase
the efficiency of CG algorithms, as explained in Chapter 4, section 4.4.4, in the context
of deconvolution.

We will end with second order techniques. In situation 1 , with X = �M, and
taking M to be symmetric and invertible, each iteration of the standard Newton’s
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method can be written:

x̂(i+1) = x̂(i) − (∇2J (x̂(i))
)−1∇J (x̂(i)) = M−1v,

considering that ∇J (x) = 2Mx− 2v and ∇2J (x) = 2M. In other words, a single
iteration of this algorithm is equivalent to solving the problem itself. Unless M has
a specific structure, the computation cost is prohibitive for most realistic inversion
problems. Some quasi-Newton variants become iterative again by approaching M−1

by a series of matrices P(i). The most popular among them is the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) method [NOC 99, Chapter 8]. For large-sized problems,
the computation burden of such quasi-Newton methods is still too high. A better
choice is to resort to limited-memory BFGS, which can be seen as an extension of the
CG method, in-between first and second order techniques [NOC 99, Chapter 9].

2.2.3. The convex case

The quadratic criteria are part of a larger family of functions J that are convex,
i.e., such that ∀x1, x2 ∈ Ω, θ ∈ (0, 1),

J (θ x1 + (1− θ)x2) ≤ θJ (x1) + (1 − θ)J (x2)

with X = �M. Similarly, X is a convex set if ∀x1, x2 ∈ X , θ ∈ (0, 1), we have
θx1 + (1− θ)x2 ∈ X .

The specification that the criteria be convex but not necessarily quadratic gives a
wider choice as far as modeling is concerned. The Kullback pseudo-distance (2.14) is
convex over�M

+ ; the Markov penalty functionsF(x) =
∑

j ϕ(xj−xj+1) are convex
over�M if ϕ is a convex scalar function such as ϕ(x) =

√
τ2 + x2, which was used

in the spectrometry example of Chapter 1, section 1.2.

The minimization of non-quadratic convex criteria, although more difficult and
more costly than the minimization of quadratic criteria, remains altogether compatible
with modern computing resources, which explains the increasingly frequent use of
convex penalty functions in signal and image restoration [IDI 99]. Let us start by
recalling a few fundamental properties of convex criteria [BER 95, App. B]:

– a convex continuous criterion J is unimodal: any local minimum is global and
the set of its minimizers is convex;

– if J1, J2 are convex and α1, α2 ≥ 0, then α1J1 + α2J2 is convex2;

2. This property “explains” why we are interested in convexity rather than unimodality: for
example, the penalized criterion (2.15a) is convex (so unimodal) if G and F are convex, whereas
the unimodality of G and F would not be enough to guarantee the unimodality of the criterion.



52 Bayesian Approach to Inverse Problems

– if J is strictly convex, there exists one and only one minimizer x̂ in any convex
X that is closed (i.e., the boundary of X belongs to X ).

On the other hand, if the criterion is non-quadratic, the minimizer x̂ is a function
of the data that is generally neither linear, nor explicit. Owing to this, the non-iterative
inversion techniques for linear systems of section 2.2.2 are no longer valid. In con-
trast, the three families of iterative techniques based on the successive reduction of
the criterion give algorithms that converge towards x̂ if J is convex and differentiable
and if X = �M. The case of a criterion that is convex but not differentiable is slightly
trickier; modern techniques, known as interior point techniques, approach the solu-
tion by minimizing a succession of differentiable convex approximations [BER 95,
p. 312].

There are also other possible families of convergent techniques: reweighted least
squares, also called semi-quadratic algorithms (see Chapter 6), or the approaches
based on maximizing a dual criterion [BER 95, HEI 00, LUE 69].

IfX is a closed convex subset of�M, some adaptation is necessary: projected gra-
dient or conditional gradient versions in the family of “global techniques” [BER 95,
Chapter 2], and techniques of projection on convex sets [SEZ 82, YOU 82] in the
family of “row-action” techniques. As for “column-action” techniques, they remain
particularly simple if the constraints are separable, i.e., if X is a Cartesian product,
e.g. the positivity corresponds to X = �+ × · · · ×�+. Finally, certain constrained
problems are equivalent to a non-constrained problem in the dual domain, which jus-
tifies the use of dual methods.

2.2.4. General case

In the case of non-convex criteria, the possible existence of local minima makes
the use of descent techniques risky, in the sense that any local minimizer is a possible
fixed point for most of these techniques. Whether we have convergence towards x̂
rather than towards a local solution then depends on the initialization. Several strate-
gies can be envisaged for avoiding these local solutions. Apart from exceptional cases,
they are notoriously more costly than the descent methods and yet still do not guar-
antee convergence towards the global minimizer. Without guaranteeing convergence
mathematically, some techniques are nevertheless sufficiently robust to avoid aberrant
solutions. They then give results that could not have been obtained by minimization
of a convex criterion, for applications such as automatic image segmentation or object
detection.

Two types of approach can be distinguished. On the one hand we have determinis-
tic methods that, in the absence of mathematical convergence properties, favor robust-
ness. For instance, the principle of gradual non-convexity (GNC) [BLA 87, NIK 98]
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consists of gradually minimizing a series of criteria using a conventional descent tech-
nique, starting with a convex criterion and finishing with the non-convex criterion.
The robustness of this technique comes from the quality of the initial solution. Its im-
plementation cost and complexity are relatively low. On the other hand, we have
the pseudo-random methods (simulated annealing [GEM 84] and adaptive random
search [PRO 84]), which make use of the generation of a large number of random
samples to avoid the traps. Simulated annealing has (probabilistic) convergence prop-
erties but the high computing cost of such techniques explains why their use is still
limited in the signal and image restoration field.

2.3. Choice of regularization coefficient

There are few methods for determining the hyperparameters in the framework of
this chapter [THO 91]. The most frequently used are the following.

2.3.1. Residual error energy control

One of the most intuitive and oldest ideas for setting the value of α that comes into
the regularized, or penalized, criterion (2.5) is to consider α as a Lagrange multiplier
in the equivalent problem:

x̂ = argmin
x

F(x) s. t. G(y −Ax) = c . (2.16)

The degree of regularization is fixed by the value of c, which can be considered as a
statistic for which the probability distribution can be deduced from p(y |x). When
G = ‖·‖2 and x0 is the true solution, the vector of the residuals y −Ax0 follows the
law of the noise, which is implicitly taken to be homogeneous, zero-mean, white and
Gaussian. It results from this that c/σ2 is a variable of χ2 with N degrees of freedom
if σ2 is the variance of the noise. It is then recommended to set c to its expectation
value, i.e., Nσ2. However, such a choice often leads to overregularization of the
solution. One explanation is that the regularized solution x̂ inevitably differs from
the true solution and that the residual errors y − Ax̂ that are effectively calculable
to obtain the value of G do not follow any known distribution. Moreover, in many
problems, the graph of the function G(y −Ax̂) = G(α) is practically horizontal over
a large range of values of α: any error in the estimation of σ2 thus leads to large
variations in the value of α that satisfies constraint (2.16).

2.3.2. “L-curve” method

It is also possible to use an alternative method that has proved its worth in linear in-
verse problems of form (2.5) and in the case where the regularization functionalF(x)
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is quadratic. This is the “L-curve” method [HAN 92]. It consists of using a log-log
scale to plot the regularization functional F(x̂(α)) against the least squares criterion
‖y −Ax̂(α)‖2 by varying the regularization coefficient α. This curve generally has
a characteristic L shape (whence its name) and the value of α corresponding to the
corner of the L provides a good compromise between the contradictory requirements
of fidelity to the data and fidelity to the prior information.

To understand why this is so, we know that, if x0 is the exact solution, then the
error x̂(α)−x0 can be divided into two parts: a perturbation error due to the presence
of the measuring error b and a regularization error due to the use of a regularizing
operator instead of an inverse operator (see (2.2)). The vertical part of the L-curve,
described for low values of α, corresponds to solutions for which F(x̂(α)) is very
sensitive to variations in α, as the measurement error b dominates x̂(α) and does
not satisfy the discrete Picard condition [HAN 92]. The horizontal part of the curve,
described for high values of α, corresponds to solutions for which it is the sum of
the squares of the residuals ‖y −Ax̂(α)‖2 that is the most sensitive to variations of
α, since x̂(α) is dominated by the regularization error as long as y − b satisfies the
discrete Picard condition.

2.3.3. Cross-validation

In the case where the hyperparameters of problem (2.5) are limited simply to the
regularization coefficient and where F and G are quadratic, cross-validation methods
also provide acceptable solutions [GOL 79, WAH 77].

The aim is to find a value of the regularization coefficient α such that the regular-
ized solution:

x̂(α,y) = arg min
x

(G(y −Ax) + αF(x)
)

(2.17)

is as close as possible to the actual object x. Let Δx be a measure of the distance
between x̂(α,y) and x. With the choice of quadratic distances for F and G, it is
natural to also choose a quadratic distance for Δx:

Δx(α,x,y) = ‖x− x̂(α,y)‖2
. (2.18)

Δx can be interpreted as a loss function measuring the risk involved in using x̂(α,y)
instead of x. A reasonable method for choosing α would be to choose the value that
minimizes this risk on the average, i.e., the mean square error (MSE):

MSE (α,x) =
∫

Δx(α,x,y) p(y |x) dy (2.19)

which is an expectation with respect to the noise probability distribution (2.9). Unfor-
tunately, the solution to this problem:

αMSE(y,x) = arg min
α

MSE (α,x) (2.20)
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depends on the real object which, obviously, is unknown. As the regularized solu-
tion x̂(α,y) can also be seen as a predictor of the observations through ŷ(α,y) =
Ax̂(α,y), it is possible to measure the difference between the real and predicted ob-
servations with the following loss function:

Δy(α,x,y) = ‖Ax−Ax̂(α,y)‖2 . (2.21)

The value of α could be obtained by minimizing the corresponding mean risk, which,
in this case, is the MSE on the prediction:

MSEP (α,x) =
∫

Δy(α,x,y) p(y |x) dy (2.22)

but, there again, the solution depends on the real object. The difficulty can, how-
ever, be overcome because the criterion MSEP(α,x) can be estimated by general-
ized cross-validation (GCV). Its basic principle is the following. Let x̂(α,y[−k]) be
the minimizer of the criterion:

J [−k](x) =
∑
n�=k

|yn − (Ax)n|2 + α ‖x‖2Q , (2.23)

i.e., the object restored by using all the data except sample yk. It is possible to use
x̂(α,y[−k]) next to predict the missing data item:

ŷ
[−k]
k (α) =

[
A x̂(α,y[−k])

]
k
. (2.24)

The method consists of looking for the value of α that minimizes a weighted energy
of the prediction error αGCV = arg minα V (α), with:

V (α) = 1
N

N∑
k=1

w2
k(α)

(
yk − ŷ

[−k]
k (α)

)2
, (2.25)

where the coefficients w2
k(α) are introduced to avoid criterion (2.25) having undesir-

able properties, such as a lack of invariance during arbitrary rotations of the observa-
tion space, or absence of a minimum. They are given by:

wk(α) =
1−Bkk(α)

1− trace (B(α)) /M
,

where Bkk is the kth diagonal element of the matrix B(α) = A(AAT + αQ)−1AT.
The calculation of the minimum relies on the “linear-quadratic” nature of the problem,
which allows a simpler relation to be established:

V (α) =
N ‖(I−B(α)) y‖2
(trace (I−B(α)))2

. (2.26)
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This clearly shows that the GCV function V (α) is, in fact, the sum of the squares
of the residual errors weighted by a coefficient that depends on α. This method has
interesting asymptotic statistical properties. For example [LI 86], x̂(αGCV,y) gives
almost surely the minimum of ‖Ax−Ax̂(α,y)‖2 when N → ∞. Nevertheless, it
has to be understood that such a result is of interest only in the case of parsimonious
parameterization of the object sought, with a number M of parameters much smaller
than the numberN of data points. These asymptotic properties and numerous practical
results explain why this method has so often been used in 1-D problems. Its use in
image processing is more recent [FOR 93, REE 90].

These methods for choosing the regularization coefficient are only clearly justi-
fied in the framework of quadratic regularized criteria. The stochastic extension of
Chapter 3 will allow us to go beyond this framework.
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Chapter 3

Inversion within the Probabilistic Framework

There are at least two reasons that encourage us to consider solving inverse prob-
lems in a Bayesian framework [DEM 89]. It was in this framework that local energy
functions and Markov modeling, which have had a lasting influence on low-level im-
age processing, were introduced. It is also this same framework that provides the most
consistent and complete answers to problems left in abeyance in other approaches,
such as the choice of hyperparameters or the optimization of a multimodal criterion.

3.1. Inversion and inference

To make the link between inversion and statistical inference more explicit, it is
useful at this stage to sum up the analysis carried out in Chapter 1. After discretization,
the direct problem takes the general formA(x,y) = 0, whereA is an operator linking
the unknown object x ∈ �M to the experimental data y ∈ �N. Often, it even takes
the explicit form y = A(x) or the linear form y = Ax, A being a matrix. Inversion,
i.e., the calculation of x when A and y are known, is very often an ill-posed problem
in two senses.

Firstly, the operator A is often singular, in the sense that there is a class K of
solutions x ∈ K such that Ax = 0 (the kernel KerA = K is thus not empty). Any
element of K can be added to any solution to give another solution and we cannot,
therefore, invert the the direct relation to determine x uniquely from y. This lack of
uniqueness makes the discrete inverse problem ill-posed in Hadamard’s sense. This
situation occurs whenever the instrument response destroys part of the information
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necessary for the reconstruction of the object. Let us not forget, however, that this
ambiguity can be removed by using a more or less empirical rule for choosing among
all the solutions, such as taking the minimum norm solution, for example.

Secondly, and more critically, no experimental device is completely free of uncer-
tainty, the simplest source being the finite accuracy of the measurements. It is thus
more realistic to consider that the object sought and the measurements taken are con-
nected by an equation of the form y = A(x) � b, in which A is an operator describing
the essential part of the experiment and � b accounts for the the deterioration of this
ideal representation by various sources of error (of discretization, measurement, etc.)
grouped together in the noise term. When the observation mechanism can be approx-
imated by a linear distortion and the addition of noise, this equation reduces to (1.3):
y = Ax + b. The presence of this noise has the effect of “spreading” the set K, since
any element x such that Ax = ε, where ε is “small” relative to the assumed level
of noise, can be added to any possible solution to obtain another acceptable solution.
However, above all, if the ambiguity is removed by taking a rule for choosing an ac-
ceptable solution, it is observed in practice that the latter behaves in an unstable way;

This

data, i.e., when the problem is well-posed in Hadamard’s sense. In fact, the instability
comes from the fact that A is ill-conditioned (see section 1.5).

So we see that, in ill-posed problems, obtaining a solution is not so much a prob-
lem of mathematical deduction as a problem of inference, i.e., of information process-
ing, which can be summed up in the following question: “how can we draw the best
possible conclusions from the incomplete information at our disposal?”

To be acceptable, any scientific inference method should: 1) take all the available
pertinent information into account; 2) carefully avoid assuming information is avail-
able when it is not. Probabilistic modeling is a handy, consistent way of describing
a situation of incomplete information. We will now see how it leads to a Bayesian
statistical approach.

3.2. Statistical inference

It should be made clear from the start that any problem dealt with through a
Bayesian approach has to be well-posed in the sense that enough information must
be provided to allow the probability distributions needed for the calculation to be at-
tributed without ambiguity. This means, at least, that an exhaustive set of possibilities
must be specified at the start of each problem. We will call this the data space (or
proof space) if it concerns possible results of the experiment, or the hypothesis space
if it specifies the hypotheses that we wish to verify. It is also useful to distinguish
between two classes of problems, called estimation and choice of model. The first

solution.calculatedtheinthe data entail large variationsinsmall changes
can easily happen even when the solution is unique and depends continuously on the
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studies the consequences of choosing a particular model that is assumed “true”, while
the aim of the choice of model is to select one model by comparison with one or more
other possible candidates.

In an estimation problem, we assume that the model is true for one (unknown)
value x0 of its parameters and we explore the constraints imposed on the parameters
by the data. The hypothesis space is thus the set of all possible values of the parameters
H = {xi}. The data consist of one or more samples. For the problem to be well-posed,
the space of all the possible samples, S = {zi}, must also be stated. The spaces H
and S can both be discrete or continuous.

Before making the estimation, it is necessary to state a logical environment I which
defines our working framework (hypothesis space, data space, relationships between
parameters and data, any additional information). Typically, I is defined as a logical
proposition stating:

– that the true value of the parameter is in H;
– that the observed data consist of N samples of the space SN;
– how the parameters are connected with the data (this is the role of the direct

model A);
– any additional information.

Of course, the physical nature of the parameters and data is implicitly specified in H,
S and A. Implicitly, all the developments that follow will be within the framework
defined by I , which signifies that any probability distribution will be conditioned by
I . This conditioning will not be indicated explicitly in order to lighten the notation.

We can now get started on the estimation problem by calculating the probability
that each of the possible values of the parameter is the actual value. Let D designate
the proposition affirming the values of the experimental data actually observed and H
the proposition x0 = x affirming that one of the possible values of the parameter x is
the actual value x0.

3.2.1. Noise law and direct distribution for data

In any statistical inference method intended to solve a problem such as (1.3), it is
necessary to start by choosing a probability law q(b) describing our information – or
our uncertainty – on the errors b. This is an essential step as it allows the direct, or
sampling, distribution to be found:

p(y |x) = q (y −A(x)) . (3.1)
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In the vast majority of cases, a centered Gaussian distribution, independent of x, is
chosen for the errors, which gives:

p(y |x) = (2π)−N/2 |R|−1/2 exp
{
−1

2
‖y −A(x)‖2

R−1

}
,

where R designates the covariance matrix of the distribution q(b). It is often diagonal,
or even proportional to the identity. A question arises immediately: What sense is to
be given to such a choice and in what situations is such a model appropriate?

should be that of the frequencies of its values in a very large number of repeated
measurements. It is then justified by reference to the central limit theorem which
says, under fairly broad conditions, that if the noise in a sample of data is the result of
a large number of accumulated elementary effects that are “random” and independent,
the Gaussian distribution is a good approximation of the real frequency distribution.
However, except for fluctuations of electronic origin in a measurement system, the
noise is not generally the result of independent effects (think, for example, of the
discretization errors that depend on the solution x0). Moreover, to be able to make
an inference with this interpretation, it would be necessary for us to have numerous
results of other measurements so as to be able to determine these frequencies, which
is an extremely rare experimental situation.

This Gaussian “hypothesis” is thus not a hypothesis on the “random” nature of the
noise. We are not at all claiming that whatever gives rise to the noise is really random
and follows a Gaussian distribution. It is not even a hypothesis in the true sense of
the word; it is rather the least compromising – or the most conservative – choice that
we can make for the noise distribution in a situation of uncertainty. We are assuming
two things here: 1) that the noise can take any real value but that its average value
is zero; in other words, there is no systematic measurement error (or if there is, we
have been able to detect and correct it), and 2) that we expect there to be a “typical
scale” of noise; in other words, large contributions to the noise are not as probable as
small ones. To put it another way, we think that the distribution for the noise should
have a mean value of zero and a finite standard deviation, even if we have no precise
idea of the value of the latter. On the other hand, we have no idea as to the existence
or otherwise of cumulants of order greater than two. In these conditions, the least
compromising choice with respect to the characteristics that we do not know – which
can be justified by information principles [JAY 82] – is that of a Gaussian distribution.
In addition, if we suspect that the noise components affecting the N samples have
different scales and are correlated, the covariance matrix of the distribution is there to
express this hypothesis. It is not necessary to specify its value but if it is unknown,
its elements, grouped together in a vector of hyperparameters θ, will in general only
complicate the problem. They are called nuisance parameters for this reason.

With a frequentist’s interpretation of a probability, the distribution for the noise
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This choice is appropriate whenever this information is all we know about the
noise. As this is a frequent situation, the choice is often made. If we have additional
information about the noise, which leads us to choose a non-Gaussian distribution,
we can include it in the same way but the result will be significantly better only if
the distribution is very different from a Gaussian one. There are situations – such as
imaging with a low particle count – where the data are integers and have low values.
Choosing a binomial or Poisson distribution can then improve the results.

3.2.2. Maximum likelihood estimation

With simply this direct distribution p(y |x,θ), we could define the solution of the
inverse problem as being that of maximum likelihood (ML), the likelihood being the
direct distribution in which y takes its observed value and parameter x becomes the
variable:

x̂ML = arg max
x∈H

p(y |x,θ).

In general, the justification for this choice comes from the “good” statistical charac-
teristics (more often than not asymptotic) of this estimator. The least squares solution
is the special case of the maximum likelihood solution when the direct distribution is
Gaussian:

x̂LS = argmin
x∈H

(y −A(x))T R−1 (y −A(x)) .

Introduced in this way, it is still a weighted least squares method (weighted by the
matrix R−1) that possesses the indispensable property of invariance under changes of
units in H and S. In many simple situations, this inference method provides all the
information we are looking for. However, in inverse problems where the parameteri-
zation is not parsimonious, the direct distribution does not contain all the information
needed to make the problem well-posed and it does not provide all the technical appa-
ratus necessary for the calculation:

1) In the special case of an indeterminate linear problem y = Ax, where A is
singular (a problem known as generalized inversion), there is no “noise” and so no
direct distribution, except in the rudimentary sense where p(y |x) is constant if x is
in the class C of possible antecedents of y, and zero otherwise. As the likelihood is
constant in class C, maximizing it is of no help for the choice within this class. The
essence of the problem does not lie in the presence of “random” noise perturbing the
data, but rather in the fact that our information is incomplete, although essentially
noise free.

2) In the linear case (1.3), matrix A of the direct problem is often ill-conditioned.
The solving operator A† = (AT R−1A)−1AT R−1 is unstable and the solution x̂ML =
A† y is unacceptable: the amplification of the noise is excessive.

3) The problem can have nuisance parameters that are of no interest to us, and they
may be numerous. When matrix R is full, N (N − 1)/2 hyperparameters are added
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which, when they are unknown, generally have to be estimated by ML as parameters
of interest x, and the global maximum may then no longer be a point but a whole
region.

4) We may have highly pertinent information on the solution we are looking for.
For example, we may know that it has to be positive, or satisfy certain constraints (as in
astronomical imaging where the integral of the object may already be known), or that it
is made up of homogeneous regions separated by clear boundaries. Such information
is not contained in the direct distribution but it would be most unreasonable to ignore
it.

5) In many problems, it is necessary to obtain not only a solution but also an in-
dication of the confidence we can have in it. If we simply have the direct distribution
(3.1), the confidence intervals given by the frequency approach only give us informa-
tion on the long term behavior of the solution, i.e., its average behavior over a very
large number of repeats of the experiment. However, we only possess the results of a
single experiment, which often cannot be reproduced.

6) Finally, the estimation of the parameters of a model that is assumed to be valid
is often just one step and we may need to judge the relative merits of various models.

It is therefore necessary to go beyond inference by ML. All the extensions men-
tioned above are “automatically” provided by the Bayesian approach.

3.3. Bayesian approach to inversion

Bayesian inference is so named because it makes great use of Bayes’ rule, which
itself is a consequence of a fundamental rule in probability calculation, the product
rule [COX 61]. Let H be a hypothesis whose truth we want to evaluate andD a set of
data connected with this hypothesis. The product rule stipulates that:

Pr(H, D) = Pr(H |D) Pr(D) = Pr(D |H) Pr(H)

where, for example, Pr(H |D) usually designates the probability thatH is true know-
ing D. From this we draw Bayes’ rule:

Pr(H |D) = Pr(H) Pr(D |H)/Pr(D)

which is none other than a learning rule. It tells us how we should adjust the proba-
bility attributed to the truth of a hypothesis when our state of knowledge changes with
the acquisition of data. The probability a posteriori for H , Pr(H |D), is obtained
by multiplying its probability a priori, Pr(H), by the probability of having observed
the data D assuming the hypothesis is true, Pr(D |H), and dividing the whole by the
probability of having observed the data independently of whether the hypothesis is
true or not, Pr(D). This last term, sometimes called the global likelihood, plays the
role of a normalization constant.
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A large part of statistical inference is based on the use of prior information on the
quantities to be estimated, which adds to the information given by the data. Thus, it is
not surprising, if we think about the deep nature of the regularization principle set out
in Chapter 2, that it shows a close link with Bayesian inference.

In the case of an inverse problem such as (1.3) and assuming that the probability
distributions concerned admit a density, the prior information on object x is expressed,
in a Bayesian context, in the form of an a priori probability density function (pdf)
p(x |θ). Bayes’ rule allows us to combine this with the information contained in the
data to obtain the a posteriori law:

p(x |y, A,θ) =
p(x |θ) p(y |x, A,θ)

p(y |A,θ)
=
p(x,y |A,θ)
p(y |A,θ)

. (3.2)

In this equation, θ is a vector of hyperparameters composed of the parameters of the a
priori distributions of the errors and the object, and p(y |x, A,θ) designates the data
law conditioned by the true solution x. It is completely determined by the knowledge
of the direct model (1.3) and the noise probability law. The last term ensures the
normalization of the a posteriori law:

p(y |A,θ) =
∫
p(y |x, A,θ) p(x |θ) dx . (3.3)

In the Bayesian approach, the knowledge (or uncertainty) about object x after obser-
vation of data y only is wholly described by the probability distribution (3.2). This
probability is equal, with just a multiplying factor, to the product of the likelihood
introduced in section 3.2 by the a priori probability p(x |θ). If we assume that, in
the case of section 3.2, the knowledge of x (which then comes purely from obser-
vations and from the structure of the problem) is represented by the likelihood, we
observe that, in the Bayesian approach, taking prior information into consideration
by means of p(x |θ) modifies our knowledge and, in general, has the effect of re-
ducing the uncertainty on the parameter x. But above all, because of the framework
adopted, the Bayesian approach enables a wider range of answers to the question
“given a probability distribution for a continuous or discrete parameter x, what best
estimate can be made and with what accuracy?”. There is not a single answer to this
question; the problem concerns the theory of the decision that answers the question
“what should we do?”. This implies value judgements and consequently goes beyond
the principles of inference, which only answers the question “what do we know?”.
Thus, we can equally well deduce a point estimator or a region of uncertainty from
(3.3) [MAR 87, TAR 87]. The maximum a posteriori is a frequent choice for the esti-
mator. It consists of giving x the value that maximizes the distribution a posteriori:

x̂MAP = argmax p(x |y, A,θ) . (3.4)

However, this is only one of the possible solutions. This MAP estimation corresponds
to the minimization of a mean decision cost with an all-or-nothing cost function, the
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limit (when ε → 0) of the mean cost Pr(‖ x̂ − x0 ‖> ε). Other cost functions have
been proposed in the framework of image modeling by Markov fields. They lead to
the maximization of the marginal probabilities [BES 86, MAR 87].

3.4. Links with deterministic methods

In the case that interests us here, i.e., an inverse problem in a finite dimension, it is
clear that regularizing according to the general principle indicated in Chapter 2, and
thus minimizing a criterion such as (2.5), is equivalent to choosing the solution that
maximizes the following a posteriori law:

p(x |y, A,θ) ∝ exp
{
− 1

2 σ2

(G (y −A(x)) + αF(x)
)}

. (3.5)

where σ2 is the variance of the noise. The above probability law is only one of the
possible choices since any strictly monotonic function other than an exponential would
do. However, this choice is particularly suitable here because, with the linear model
(1.3), taking the usual hypotheses that the noise is Gaussian and independent, as G is
a Euclidian norm, the conditional law p(y |x, A,θ) is really:

p(y |x, A,θ) ∝ exp
{ 1

2σ2
G (y −A(x))

}
. (3.6)

For the analogy to be complete, the a priori law must take the following form:

p(x |θ) ∝ exp
{
− α

2σ2
F(x)

}
, (3.7)

and, for it to be rigorous, the a posteriori law (3.5) must be proper, a sufficient condi-
tion being that (3.6) and (3.7) are also proper:∫
�N

exp
{
− 1

2σ2
G (y −A(x))

}
dy < +∞ ,

∫
�M

exp
{
− α

2σ2
F(x)

}
dx < +∞ .

Many local energy functions used in image processing were introduced in a Bayes-
ian framework. They define x as a Markov field (see Chapter 7). Although the energy
point of view is also held by some members of the image processing community,
criteria of form (2.5) can generally be reinterpreted in a Bayesian framework, even if
it means making minor changes in F to ensure the normalization of equation (3.7).

In consequence, the maximum a posteriori estimator, which is the Bayesian esti-
mator the most used in inversion, becomes the same as the minimizer of the penalized
criterion (2.5):

x̂MAP = argmax
x

p(x |y, A,θ) = arg max
x

p(x,y |A,θ)

= argmin
x

G(y −A(x)) + αF(x)
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under the technical conditions that allow this development (principally, that the prob-
lem brings in a finite number of variables). It is thus obvious that the Bayesian frame-
work gives a statistical sense to the minimization of penalized criteria. The question is
not, however, whether the Bayesian approach is a justification of the other approaches.
We could also, and conversely, say that the same result gives a deterministic interpre-
tation of the probabilistic estimator of the maximum a posteriori and that an estimator,
once defined, depends no more on the formal framework that engendered it than on
the digital means used to calculate it. The question is rather one of seeing that the
Bayesian approach provides an answer to the problems raised in section 3.2. In addi-
tion to its great consistency, it makes original tools available:

– marginalization (everything that does not interest us is simply integrated out of
the problem);

– regression (the conditional expectation does not have an equivalent in the energy
framework);

– stochastic sampling (Monte Carlo methods, simulated annealing algorithms, ge-
netic algorithms), not conceivable without the Bayesian approach (on this point, see
Chapter 7, section 7.4.2).

3.5. Choice of hyperparameters

The Bayesian framework appreciably extends the range of methods available for
determining the hyperparameters. To be applied effectively, all the methods described
in Chapter 2 require us to choose the value of the regularization coefficientα and, more
generally, all hyperparameters θ defining the F and G distance measures: the variance
of the noise, the object correlation parameters and the parameters of the local energy
functions. The determination of θ is the most delicate step in image restoration and
reconstruction methods. Although the problem is still open, the Bayesian approach
provides consistent tools for tackling it.

Hyperparameters θ constitute a second level in the description of the problem,
which is indispensable to “rigidify” the first level composed of the parameters them-
selves – i.e., the object x. In an ill-posed problem, the value of the parameters is im-
portant for obtaining an acceptable solution but has no intrinsic interest. In a Bayesian
approach, two levels of inference can be distinguished. The first is inference on x, for
a given value of θ, through the a posteriori distribution of equation (3.2). The second
is inference on θ through the analog relationship:

p(θ |y, A) = p(θ |A) p(y |θ, A)/p(y |A) . (3.8)

Here again, we find a characteristic of the use of Bayes’ rule: the marginal likelihood
p(y |θ, A) attached to the data in the second level is the coefficient of normalization
in the first.



68 Bayesian Approach to Inverse Problems

If, as is often the case, this term is sufficiently peaked, i.e., if the data y contain
enough information, the influence of the a priori distribution p(θ |A) is negligible and
the second level of inference can be solved by maximizing the likelihood. But to do
this, we have to solve the marginalization problem corresponding to the calculation
of the integral in (3.3). Such integrals rarely lead to an explicit result. One notable
exception is the joint Gaussian distribution p(x,y |θ, A), as we will see in section 3.8.

To get around the problem posed by the explicit calculation of a marginal likeli-
hood, we can introduce “hidden variables” q which complete the observations y in
such a way that the new likelihood p(y, q |θ, A) is simpler to calculate. We are then
led to maximize the conditional expectations by iterative, deterministic or stochastic
techniques (EM and SEM algorithms) [DEM 77], the algorithm converging towards
the solution of ML. The need for such stochastic approaches appeared when it was
found to be impossible to implement convergent likelihood maximization methods by
conventional optimization techniques, as the likelihood was not calculable.

Furthermore, the joint distribution or generalized likelihood:

p(y,x |θ, A) = p(x |y,θ, A) p(y |θ, A) = p(y |x,θ, A) p(x | θ) (3.9)

sums up all the information at the first level of inference. Its maximization with re-
spect to x and θ can be envisaged. Thus, the integration problem raised by (3.3) is
obviously removed. At fixed θ, the generalized maximum likelihood (GML) coin-
cides with the MAP; at fixed x, it corresponds to the usual ML for θ, x and y being
known. Nevertheless, repeated alternation of these two steps is hazardous: the char-
acteristics of the corresponding estimator are not those of the usual ML [LIT 83]. It
can even happen sometimes that the GML is not defined because the likelihood may
have no maximum, even local [GAS 92]. This technique thus has a marked empirical
character.

Thus, the Bayesian approach leads fairly naturally to the use of estimators based
on likelihood for the estimation of the hyperparameters. Despite definite difficul-
ties of implementation, interesting results have been obtained in a one-dimensional
framework. In a two- or three-dimensional framework, we have to be more cautious.
Although it is possible to estimate the hyperparameters in several cases, the values
obtained using this approach do not necessarily lead to good results for the estimation
of the parameter of interest x, particularly when the latter comes from “natural” data.
The cause could lie in there being too great a difference between these natural data
and the behavior of the a priori model. The question of hyperparameter estimation
thus remains wide open.

3.6. A priori model

A reproach that is often levelled against Bayesian estimation is that it depends on
the knowledge of a hypothetical, uncertain “true model” that engendered the object
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to be reconstructed. To formulate this reproach, we have to implicitly accept that
reality can be “enclosed” in a mathematical model. This opens up a huge philosoph-
ical debate... In the case of the probabilistic approach to inversion as we see it, the

It
does, however, seem important to recall that our probabilistic hypotheses are not hy-
potheses on the “random” character of the object but choices of a way of representing
incomplete prior information – or uncertain knowledge – compatible with the chosen
inference tool. This situation is far from unusual, as it is rare for the prior informa-
tion available in a real problem to come in a form directly suited to the theoretical
framework chosen for its processing.

Let us remember that the advantages of the Bayesian approach stem not so much
from the additional information introduced by the prior – the energy and deterministic
interpretations of the functional of regularization F(x) of section 3.4 show that this
information is not proper to the Bayesian approach, and the information on nuisance
parameters is diffuse most of the time – as from the access it provides to a layer of
tools that does not exist in the other approaches, such as marginalization, regression
and pseudo-random algorithms.

Having said this, the conversion of prior information into probabilities is a tricky
problem that is still far from being solved. To describe object x, the prior is often
chosen pragmatically, as we will see later. There are, however, some formal rules that
lead to reasonable choices [BER 94, KAS 94, ROB 97] and are used in particular for
the hyperparameters. They often lead to an improper law, which does not cause any
special difficulty if it is handled correctly [JEF 39]. Here are a few examples.

Some methods rely on transformation group theory to determine the “natural” ref-
erence measure for the problem and to satisfy certain invariance principles. In practice
though, this approach has done little more than justify the use of Lebesgue’s method
for the localization parameters (thus providing an extension to the continuous case
of the uniform distribution resulting from the application of Bernouilli’s “indifference
principle” in the discrete case) and the Jeffreys measure in the case of scale parame-
ters [JEF 39, POL 92].

Other methods are based on information principles. These are mainly maximum
entropy methods (MEM), in which we look for the distribution that is closest to the
reference distribution (in the Kullback divergence sense) whilst verifying incomplete
prior information [JAY 82]. There again, this approach has mainly just helped to
justify certain choices after the event. In addition, it is only really workable when the
prior information is made up of linear constraints on the distribution we are looking
for (moments). We are thus working in the family of exponential distributions.

Another formal principle consists of using a conjugate prior, i.e., a prior belonging
to the same family as the direct distribution of the problem, to obtain an a posteriori

frequentist’s interpretation of the probabilities maintains an annoying confusion.
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distribution in the family [ROB 97]. This is only of interest if the family in question
is as small as possible and parametrized. In this case, the step from a priori to a pos-
teriori, by application of Bayes’ rule, comes down to updating the parameters. The
interest of this method is essentially technical, as the a posteriori is always calculable,
at least up to a certain point. A partial justification can also be found by invariance
reasoning: if the data y change p(x) into p(x |y), the information that y contributes
about x is clearly limited; it should not lead to a change of the whole structure of p(x),
but only of its parameters. It is obvious though that the main motivation for using the
method is its convenience. However, only certain families of direct distributions, such
as exponential families [BRO 86], guarantee the existence of conjugate priors and it
is often necessary to limit use of the method to this class of distributions. In addi-
tion, the “automatic” nature of this way of making choices is rather deceptive because
additional hyperparameters – the values of which have to be specified – inevitably
appear.

A last, very important class is composed of “tailor made” constructions, in other
words, constructions that are not based on general principles like the previous ones
but make pragmatic use of probabilistic methods that express the properties expected
of the solutions as well as possible. It is into this category that we must put the Gibbs-
Markov fields, which have undergone spectacular development in imaging since 1984
[GEM 84] and which allow essential local properties that an object must possess to be
incorporated into an a priori distribution. The construction of these models requires
considerable know-how but is a very powerful way of incorporating elaborate prior
information. The price to be paid for this is high complexity, both in the handling of
the models and in the implementation of the resulting estimators. Chapter 7 is entirely
devoted to Gibbs-Markov models.

3.7. Choice of criteria

The Bayesian approach brings inversion down to the determination of an a pos-
teriori law. Since we cannot envisage calculating such laws completely, we content
ourselves with looking for a point estimator, which is often the maximum a posteri-

etc.) but it is important to assess the consequences of such a choice carefully and, if
necessary, think about alternatives.

It is reasonable to raise the question of the necessity for the solution to be contin-
uous with respect to the data and, consequently, the need for convexity of the regu-
larization criteria. While quadratic and entropy approaches are well known for mak-
ing inverse problems well-posed, the minimization of a non-convex functional cannot
guarantee that the solution will be continuous: a small variation in the data can induce
a “jump” from one valley to another and thus a loss of continuity. However, in many

ori one. There are alternatives (marginal maximum a posteriori, mean a posteriori,
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problems, these transitions are not only desirable but necessary to restore discontinu-
ities, edges, interfaces, bright spots, etc. without limits in terms of spatial resolution.
We can shed a different light on this problem by noting that certain non-convex cri-
teria introduced in imaging have an equivalent expression implying hidden variables.
In this case, the problem leaves convex analysis and incorporates a measure of com-
binatory analysis or hypothesis testing, which comes more under decision theory than
estimation. Bayesian analysis remains pertinent in this combined detection-estimation
context. Much recent work has followed this direction, combining several levels of
variables, mixing low- and high-level descriptions, or data acquired by different ex-
perimental means. It is in this sense that the conventional concepts of regularization,
such as continuity with respect to the data, are not completely appropriate and an effort
should be made to extend them.

3.8. The linear, Gaussian case

The Gaussian laws associated with linear direct models provide a linear estima-
tion structure and thus a very convenient algorithmic framework. However, they only
allow us to incorporate crude information, basically limited to second order charac-
teristics. Thus, in standard regularization theory [TIT 85], the choice of a quadratic
term for fidelity to the data: G(y − Ax) = ‖y −Ax‖2P is equivalent to choos-
ing a Gaussian distribution for the noise: q(b |Rb) ∼ N (0,Rb), with Rb ∝ P−1.
Similarly, choosing quadratic penalization: F(x) = ‖Dkx‖2 is also equivalent to
choosing a Gaussian prior distribution for the object: p(x |Rx) ∼ N (0,Rx), with
Rx ∝ (DT

k Dk)−1, assuming, of course, that the matrix DT
k Dk is defined as positive.

Deterministic “linear-quadratic” regularization is thus rigorously equivalent to Gaus-
sian linear estimation and the solution, which is explicit, is given by equations (2.11)
and (2.12):

x̂ = (AT R−1
b A + R−1

x )−1AT R−1
b y , (3.10)

= Rx AT (ARx AT + Rb)−1 y , (3.11)

and has the remarkable characteristic of being a linear function of data y. This “linear-
quadratic” or linear Gaussian inversion holds a dominant position in inversion prob-
lems and it is a common reaction to say “inverse problems aren’t complicated; you
just need to smooth the data before doing the inversion”. This way of seeing things
is not wrong and is, in fact, sufficient for many problems but it is limiting; it stops us
from going further and induces a cascading scheme – linear filtering of a generalized
inverse solution – that is only justified in the “linear-quadratic” framework.

3.8.1. Statistical properties of the solution

Solution (3.10) is, in the Gaussian case, the mode, the mean and the median of
the a posteriori probability distribution (3.5) all at once. It minimizes several very
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commonly used cost criteria, in particular the mean quadratic error. Obviously, in
this case, we are talking about a mean with respect to the a posteriori distribution,
but many physicists and engineers only know the mean square error (MSE) defined
as a mean with respect to the direct distribution (3.6). It is therefore useful to study
the MSE, which is the sum of the bias energy and the trace of the covariance matrix:
MSE (x̂) = ‖E(x̂)− x0‖2 + traceCov(x̂) , designating the “true” solution by x0.
For the sake of simplicity, we will assume that the noise is stationary and white: Rb =
σ2

b I and that we can write Rx = σ2
x (DT D)−1. We thus have α = σ2

b/σ
2
x.

The expectation of regularized solution (2.11), for direct distribution (3.6), can be
written:

E(x̂) = E
(
(AT A + αDT D)−1 AT (Ax0 + b)

)
= (AT A + αDT D)−1 AT Ax0 .

Thus, for the bias to be zero (E(x̂) − x0 = 0), we would need α = 0, i.e., we must
not regularize! The bias energy is:

‖E(x̂)− x0‖2 =
∥∥((AT A + αDT D)−1 AT A− I

)
x0

∥∥2
,

an increasing function of α, that equals zero and has a zero derivative at α = 0 and
that tends towards ‖x0‖2 when α→∞.

The covariance matrix of the solution can be written:

Cov(x̂) = E
(
(x̂− E(x̂)) (x̂− E(x̂))T

)
= σ2

b (AT A + αDT D)−1 AT A (AT A + αDT D)−1 .

To calculate its trace, we assume that matrices A and D have the same singular vec-
tors1, so that we have the factorizations:

AT A = UΛ2
a UT and DT D = UΛ2

d UT ,

where Λa and Λd are diagonal matrices composed respectively of the singular values
λa(k) of A and λd(k) of D, k = 1, 2, . . . , M . We thus obtain:

traceCov(x̂) = σ2
b

M∑
k=1

λ2
a(k)

(λ2
a(k) + αλ2

d(k))2
,

a strictly decreasing function of α, tending towards zero when α→∞.

1. This is the case, for example, if D is the identity matrix, or if A and D are two circulant
matrices, such as those we will encounter in Chapter 4.
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0 through

an approach, frequent in statistics, consisting of looking for estimators without bias
and, if a degree of freedom remains, with minimum variance2, leads to the generalized
inverse solution, the MSE of which is:

MSE (x̂GI) = traceCov(x̂GI) = σ2
b

M∑
k=1

1
λ2

a(k)
.

This can be considerable when some singular values λa(k) are small, which is pre-
cisely the case in discretized and ill-conditioned problems. It can thus be said that,
in terms of MSE, regularization consists of voluntarily introducing a bias in order to
considerably reduce the variance of the solution.

3.8.2. Calculation of marginal likelihood

The linear, Gaussian case is one of the few that allow an explicit calculation of the
marginal likelihood of equation (3.3), used to adjust the values of hyperparameters θ.
When these are limited to the variances σ2

b and σ2
x for example (or to the pair σ2

b and
α = σ2

b/σ
2
x), we have:

p(x, y |σ2
x, σ

2
b ) =

(
2π σ2

b

)−N/2 (
2π σ2

x

)−M/2 ∣∣DT D
∣∣1/2

e−Q/2σ2
b ,

where Q = (y −Ax)T (y −Ax) + αxT DT Dx .

To calculate the ordinary, or marginal, likelihood of α and σ2
b , we have to “integrate

x out of the problem”. To prepare this integration, a perfect square is conventionally
made to appear in Q:

Q = (x− x̂)T (AT A + αDT D) (x− x̂) + S(α) ,

with S(α) = yT (y −Ax̂), which leads to a Gaussian integral:

py |α, σ2
b ) =

∫
px, y |σ2

x, σ
2
b ) dx

=
(
2πσ2

b

)−N/2
αM/2

∣∣DT D
∣∣1/2 ∣∣AT A + αDT D

∣∣−1/2
e−S(α)/2σ2

b .

2. This strategy has no serious basis. Good asymptotic properties (when N → ∞) are often
mentioned for these estimators without bias and with minimum variance, but an estimator such
as (3.10) also converges towards x0 in the same conditions, and faster, since for any finite N ,
its MSE is smaller.

the bias energy and that efforts to find it would therefore be in vain. Also note that

Thus, there is an “optimum”, strictly positive, value of α, that makes the MSE
minimum. It is worth noting, however, that it depends on the true solution x
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By switching to logarithms, we obtain the log-marginal likelihood:

L(α, σ2
b ) =

M

2
logα− N

2
log(2πσ2

b ) +
1
2

log
∣∣DT D

∣∣− 1
2

log
∣∣AT A + αDT D

∣∣− S(α)
2σ2

b

.

If this likelihood is sufficiently peaked, we can then satisfy ourselves with finding the
(α̂, σ̂2

b ) pair that maximizes L(α, σ2
b ). We have:

∂L

∂σ2
b

= − N

2 σ2
b

+
S(α)
2 σ4

b

= 0 =⇒ σ̂2
b =

S(α)
N

,

the“usual” estimator for variance. It is, however, difficult to maximize L as a function
of α. We will thus content ourselves with finding α̂ by exploring a discrete grid, since
the result x̂(α) is, in general, sensitive only to variations of the order of magnitude of
α [FOR 93, THO 91].

3.8.3. Wiener filtering

The “linear-quadratic” framework is the only one that allows a statistical interpre-
tation to be given in the infinite dimension problem [FRA 70]:

y = Ax+ b , x ∈ X , y ∈ Y . (3.12)

For this, we assume that the functions x, y and b appearing in equation (3.12) are
particular trajectories or realizations, of stochastic processes X , Y and B, linked by
an analog relation3:

Y = AX +B . (3.13)

If the zero-mean processX depends on a variable r, its covariance function is defined
as ΓX(r, r′) = E(X(r)X(r′)), and we assume that the functions x, trajectories of
the process X , belong to a Hilbert space X and the functions y and b, the respective
trajectories of Y and B, belong to the same Hilbert space Y (which may be distinct
from X ). The covariance (function) of X can thus be considered as the kernel of an
operatorRX defined on the space X :

(RX φ)(r) =
∫

ΓX(r, r′)φ(r′) dr′, φ ∈ X .

The inverse problem is to estimate a realization x ofX , given the observation data
of the realization y of Y and probabilistic prior knowledge on the processesX andB.

3. Here, for the sake of simplicity, we also assume that processes X, Y and B have zero mean.
This hypothesis is not restrictive as, if they do not, the processes can always be centered and,
thanks to the linearity of A, relation (3.13) remains true for the centered processes.
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In the special case whereX is a Gaussian process (or any linear transformation – such
as the derivative – of a Gaussian process), the a priori probability law for X can be
written symbolically4:

pX(x) ∝ exp
{
−1

2
〈
x,R−1

X x
〉
X
}
.

If we take the hypothesis that the noise process B is additive, white and Gaussian of
variance σ2, the a posteriori law can be written:

pX(x |Y = y) ∝ exp
{
− 1

2σ2

(
‖y −Ax‖2

Y + σ2
〈
x,R−1

X x
〉
X
)}

.

The best estimator of x, given the observation data y, depends on the choice of the
optimality criterion but, in this case, if we choose the maximum of the a posteriori
law or the MSE and if we factorize the covariance operator according to:

RX = (C∗C)−1, (3.14)

the solution minimizes the criterion ‖y −Ax‖2
Y +σ2 ‖Cx‖2

X . It follows that x̂ = Gy,
where G is given by (2.7) with α = σ2. Moreover, if we define the operator RB =
σ2 Id , where Id is the identity operator in Y (RB is the covariance operator of white
noise), then G can also be written in the form:

G = RX A∗(ARX A∗ +RB)−1, (3.15)

which is the form of the Wiener filter. Put differently, the Tikhonov regularizer (2.7)
is analogous to a Wiener filter in the case of white noise, provided that the constraint
operatorC that appears in it is linked to the covariance operatorRX by relation (3.14).
Note, however, that second order ergodic processes have trajectories of finite power
but infinite energy: X is not a summable square function space.

Equation (3.15) differs from the usual expression for a Wiener filter expressed in
the Fourier domain. In fact, the expression above is more general. We will find the
usual formulation again in Chapter 4, by taking advantage of additional hypotheses
such as the convolutional structure of operator A and the weak stationarity (second
order) of random processes X and B.

In contrast, in the case of non-quadratic functionals G or F , the minimization
of criterion (2.5) does not have a systematic statistical interpretation. In substance,
the difficulty comes from the fact that the mathematical quantity characterizing the
probability of a random process indexed on a space of finite dimension is, in this case,
a set of functions having no direct relation with (2.5) and not allowing the likelihood
function to be defined naturally.

4. In fact, the law of a process is given by the joint law of the n random variables
X(r1), X(r2), . . . , X(rn), ∀n ∈ �, ∀(r1, r2, . . . , rn) ∈ �n.
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