Evaluation of the potential of the VLIW Digital Signal Processor
TMS320C6201 for UMTS FDD standard baseband processing
implementation

Genevieve Baudoin
ESIEE
baudoing@esiee. fr

Abstract

In this paper, we evaluate the potential of the new
VLIW Digital Signal Processor TM320C6201, to im-
plement the baseband processing of a UMTS (Univer-
sal Mobile Telecommunication System) base station
recewer. We have focussed our attention on the DSP
implementation of the Viterbi decoder and of the syn-
chronization task of the base station receiver.

1 Introduction

The UMTS is a new generation standard for mo-
bile communications. The standardization process is
still under development and the first commercial use
is planned to year 2002. Compared to preceding gen-
erations such as GSM, UMTS will provide higher data
rates for multimedia communications. One of the
multiple access techniques for UMTS is W-CDMA
Wideband Code Divsion Multiple Access [4].

The UMTS standard will require a heavy process-
ing load from the mobile and the base station. But
at the same time new powerful DSPs, such as Very
Long Instruction Word VLIW DSP, are appearing on
the market. The typical speed of these DSP is above
1000 Mips. As their cost and power consumption are
quite high, they cannot not be used in mobile termi-
nals but they are interesting for base stations.

2 UMTS FDD schematic for Uplink

Through our work, simple UMTS link on one ded-
icated physical channel [3] was considered. In this
paper, only the uplink transmission is described, the
downlink being very similar. There are two types
of dedicated physical channels: Dedicated Physical
Data Channel DPDCH and Dedicated Physical Con-
trol Channel DPCCH. They are multiplexed. Fig-
ure 1 is a Simple schematic of uplink transmitter.
User data are first coded with convolutional encoder
(rate 1/3 and constraint length K=9), rate matched

Roman Marsalek, Jiri Prokes
Technical University of Brno
marsaler@esiee. fr

and interleaved. After interleaving, data are spread
with a channelization code with a basic chip rate of
4.096 Mcps (different codes ¢4 and ¢, are used for con-
trol and data channels). The signal is then scrambled
with a complex scrambling code (a, + jag). The re-
sulting complex signal is filtered with shaping root
raised cosine filter of 5 MHz bandwidth and subse-
quently modulated.

at]a
Shaping
| Filler |[»

Cq
DPDCH
Convol. Rate Interleaver
Coder i Matching
@ To modulation

DPCCH T
~ Shaping
Y G [>
CC

Figure 1: Uplink transmitter

In the receiver, Rake structure with coherent chan-
nel estimation is used. Outputs from all fingers
are added together and resulting signal is deinter-
leaved, rate-dematched and decoded (using Viterbi
algorithm): see Figure 2. But as a first step, base-
band signal (after demodulation) must be synchro-
nized, the first chip of the spreading sequence has to
be identified. There are two devices for synchroniza-
tion: Acquisition and Tracking device. Initially, ac-
quisition is used to find beginning of the frame (length
of frame is 10ms) and then synchronization is refined
using Tracking device.

3 Choice of tested algorithms

We have choosen to test 2 algorithms for the DSP
implementation: the Viterbi algorithm and the corre-
lator algorithm which is used intensively in the syn-
chronization process. Both algorithms require a lot of
calculations, the Viterbi decoder relying more on log-
ical operations and the correlation only on arithmetic
operations.

Chamnel paths

estimation —‘

.|/l
— Filer Rike -
from Fingers ¢ R —
. ; i Viterb
emodulaion Wh, . + !; __’ :E’[fr" -’ dematch. } nif:,{{,, _’
malcned jiritivi LAV
—M Filer |-/ filers "/ U_‘
Rake
Receiver

Figure 2: Uplink receiver

4 Presentation of DSP TMS320C6201

The TMS320C6201 is a new powerful 32-bit
fixed point DSP from Texas Instruments. The
TMS320C62xx family of DSPs use the VelociTI archi-
tecture, a high-performance, advanced VLIW (Very
Long Instruction Word) architecture. The VLIW ar-
chitecture makes use of multiple execution units run-
ning in parallel, performing multiple instructions dur-
ing a single clock cycle. There are 8 execution units
in the C6201. Instructions are packed in Very Long
Words consisting of 8 32-bits instructions, and when
the 8 instructions are executed in parallel the DSP
can operate at a maximum of 1600 Mips.

VelociTI’s advanced feature

- Instruction packing: reduce code size,

- All instructions can operate conditionally: flexibil-
ity of code,

- Variable-width instructions:
types,

- Fully pipelined branches: zero-overhead branching.

flexibility of data

Main features of TMS320C6201

- Performance up to 1600 million instructions per sec-
ond (MIPS),

- CPUs frequency is 200 MHz (5-ns clock cycle time),
- Up to eight 32-bit instructions every cycle (executes
up to eight instruction in parallel),

- 32 general purpose registers of 32-bit word length,
- 8 control registers,

- 8 functional units,

- 2 multipliers,

- 6 ALUs (Arithmetic Logic Unit),

- 8/16/32-bit data support.

Internal memory

The TMS320C62xx have a 32-bit byte-addressable
address space. Internal (on-chip) memory is orga-
nized in separate data and program spaces. In the

C62xx there are two 32-bit internal ports to access
internal data memory. The C62xx have a single in-
ternal port to access internal program memory, with
an instruction-fetch width of 256-bits.

Functional unit types and performed opera-
tions:

There are 2 sets of 4 functional units: named L, S, M
and D units.

e L unit
- 32/40-bit arithmetic and compare operations,
- Leftmost 0 or 1 bit counting for 32 bits,
- 32-bit logical operations.

e .S unit
- 32-bit arithmetic and logical operations,
- 32/40-bit shift and 32-bit bit-field operations,
- Branches,
- Constant generations,
- Register transfer to/from the control register
file (.S2 only).

¢ M unit
- 16 x 16 bit multiply operations.

e .D unit
- 32-bit add, subtract, linear and circular address
calculation,
- Loads and stores with a 5-bit constant offset,
- Loads and stores with a 15-bit constant offset
(.D2 only).

For more details about TMS320C62xx architecture
see [1].

5 Program optimization techniques

There are 4 main phases in the code development
flow, which are used according to required code effi-
ciency, see [1, 2].

1. Writing C code

2. Refining C code
- C compiler optimization,
- Using intrinsics to replace complicated C code,
- Using word access to operate on 16-bit data
stored in the high and low parts of a 32-bit reg-
ister,
- Software pipelining the instruction manually,
- Using down counting loop counter,
- Eliminating redundant loops,
- Loop unrolling.

3. Writing linear assembly Linear assembler is a
simplified assembler in which the programmer

don’t have to specify neither on which function-
nal unit an instruction should run, neither which
instructions are to be run in parallel.

- Translating C code to Linear Assembly,

- Drawing a Dependency Graph,

- Linear Assembly Resource Allocation,

- Using the assembly optimizer.

4. Writing final assembly
- Modulo iteration interval scheduling,
- Determining the minimum iteration interval.

6 Viterbi decoder

Viterbi decoder is an efficient technique for the de-
coding of convolutionaly coded data, first introduced
in 1967. Convolutional coder in UMTS has a con-
straint length K=9 and coding rate 1/3. Decoding is
based on comparing likelihoods between received sig-
nal and all possible sent sequences. It can use differ-
ent distances (either Hamming distance or Euclidean
type distance). For our simulations, we used Ham-
ming distance (hard decision).

Principle of Viterbi decoder

Viterbi decoder principle can be well illustrated us-
ing trellis representation. As the trellis of the UMTS
coder is too big for drawing (constraint K=9 gives 256
states of trellis), we give in Figure 3 an example of
trellis for coder with K=3 There are three main parts
of trellis. Tn the first one we simply calculate ham-
ming distances for K-1 bits. In the second one, main
part, for each node there are two possible incoming
paths - upper and lower, depending on wether a 0 or a
1 is transmitted. Algorithm must choose the one with
smaller hamming distance, the survivor, and store in-
formation about this decision. Then in the last tail
part we generally know that zeros were sent to set
coder into initial zero state. Afterwards, traceback
routine is performed to obtain estimate of received
sequence.

Implementation

For the implementation of the main part of the algo-
rithm, we are using the butterfly structure which is
highlighted on figure 3. A butterfly has 2 input nodes
and 2 output nodes. The 2 input nodes correspond
to states with the same 8 bits except for the LSB.
So whatever bit is sent, these nodes lead to the same
output nodes.

In one 32-bit word, we store the possible coder
outputs for the whole butterfly, which can be loaded
from memory together. In each byte, the value for
one local path is stored. Then hamming distance is
calculated using XOR between received sequence and

K=3 Starting point for "traceback”

Way from upper part {0)

Butterfly structure
bt (KDLt Kobit (K+1>Ahi/r/ (max-K+lLbit - maxbiy

Starting part

Main part - body Tail part

Way from lower part (1}

Figure 3: Example of trellis

4 possible butterfly sequences by successively calcu-
lating the number of ones in each byte.

Optimization results

The followin
with 50-bit before coding (42 information bits and 8
tail bits). The first version was written in C with no
compiler optimization. Then compiler optimization
was used (compilers parameter -0l..-03). Up to
level -03, program works correctly, but for -03, func-
tionality is disrupted by optimizer. Next versions
were written in linear assembler and then also in

pure assembler using ”“hand-made” optimization.

g results were obtained for a sequence

Type of optimization Benchmark in cycles
No optimization 3.059.298

Compiler option -ol 1.876.316

Compiler option -02 1.734.911

Compiler option -03 1.674.622

Linear assembler 269.925

Hand optimized assembler | 87.832

Table 1: Benchmarks for Viterbi decoder

As you can see from the table 1, rewritting of code
into linear assembler gives 6 times faster code com-
paring with optimized C program. Hand optimized
assembler code can improve speed 20 times. For an-
other length (defined by parameter maz) of coded
sequence, the required number of cycles for decoding
can be calculated (approximately) by the following
equation:

Number_of_cycles = 3400 4+ (maxz — 8) x 2010 (1)

So for 8kb/s speech service, with 104 bits before con-
volutional coding in each frame, decoding time is less
than 1ms (frame duration is 10 ms).

7 Correlator - hypothesis testing

Principle of synchronization

The most important part of synchronization devices
is hypothesis testing device (correlator), which is used

for acquisition as well as in early-late tracking device.
In correlator, demodulated signal is firstly descram-
bled with the same scrambling sequence as in trans-
mitter. Then channelization sequence is removed also
using multiplication with the same channelisation se-
quence as in transmitter. Result is accumulated over
N chips and phase dependancy is removed with squar-
ing and addition of T and Q branches. This proccess is
performed for a large number of possible scrambling
sequence shifts and the one with highest output cor-
relation value is chosen to be right delay.

Descrambling Despreading

ﬁé)
: 4

o £ o[

Figure 4: Correlator

Implementation

For reducing the calculations load, scrambling se-
quence was first multiplied with control channel chan-
nelisation sequence and then only operations corre-
sponding to descrambling with this new sequence had
to be done. Two samples per chip were used for ob-
taining smaller timing error. Data were stored in
integer fixed point format.

Optimization and Results

For correlator implementation, only C language
was used till now. Length of scrambling sequence
used for calculations was 1536 chips (correspond-
ing to 6 pilot bits present in one control channel
slot). The results presented here were obtained
for 1000 examined shifts of descrambling sequence.

Used optimization Data in | Data in
external internal
memory memory

Short access, no op- | 307.29 102.20

timization Mecycles Mecycles

Short access, -03 108.09 4.69 Mcy-
Mcycles cles

Word access, intrin- | 257.82 52.85

sics Mcycles Mcycles

Word access, intrin- | 54.83 3.91 Mcy-

sics, -03 Mecycles cles

Table 2: Results for the correlator

In all simulations data were expected to have short
type. In the first two programs, short access to data
was used, without and with optimization. In the 2
remaining cases, word access to data was used, i.e.
in each word two short data were stored. Then in-
trinsics (special C functions representing assembler
instructions) for multiplication between low and high
parts of word were used to improve performance.

Allocation of data in internal or external memory
was examined, and results show that it is obligatory
to store data into internal memory, because in other
case, it is not possible to optimize code speed due to
the slow access to external memory. Assumming 5 ns
instruction cycle of DSP, our best result is less then
20 ms.

It is probably possible to improve correlators code
efficiency by rewritting code into assembler or at least
into linear assembler.

8 Conclusion

The C6201 DSP is very well suited for basestation
processings requiring a lot of arithmetic operations,
such as the correlators of synchronization process.
But for purely logical processing the performances
are not very interesting. On example for Viterbi de-
coding, classical DSPs with integrated Viterbi accel-
erator give equivalent results. while the performance
for the correlator on a C6201 are significantly better
than those of a C541. This can be explained because
the correlator use all the functional units while the
Viterbi decoder never uses the 2 multiplier units and
there can be only 6 instructions executing in parallel.
Even if the C development tools of the DSP are rather
powerful, hand-written assembler is much more effi-
cient, as it can be seen with the Viterbi example.

9 References

References

[1] Texas-Instruments, BXIEX, TMS320C622/C67x CPU
and Instruction Set - Reference Guide, March 1998.

[2] Texas-Instruments, BXTEX, TMS320C62zx DSP De-
sign Workshop - Student Guide, April 1997.

[3] ITU submission editor, INXTEX, The ETSI UMTS Ter-
restrial Radio Access (UTRA) ITU-R RTT Candidate
Submission, 1998.

[4] Viterbi A.J. , IATEX, CDMA, Principles of Spread
Spectrum Communication, Addison-Wesley, 1995.

