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A General Analytical Tool for the Design of Vibration
Energy Harvesters (VEHs) Based on the Mechanical

Impedance Concept
Dimitri Galayko and Philippe Basset

Abstract—This paper reports on a new approach for the anal-
ysis and design of vibration-to-electricity converters [vibration en-
ergy harvesters (VEHs)] operating in the mode of strong electro-
mechanical coupling. The underlying concept is that the mechan-
ical impedance is defined for a nonlinear electromechanical trans-
ducer on the basis of an equivalence between electrical and me-
chanical systems. This paper demonstrates how the mechanical
impedance of the transducer depends not only on the geometry
and the nature of the electromechanical transducer itself but also
on the topology and on the operation mode of the conditioning cir-
cuit. The analysis is developed for resonant harvesters and is based
on the first-harmonic method. It is applied to three electrostatic
harvesters using an identical conditioning circuit but employing
transducers with different geometries. For each of the three config-
urations, the mechanical impedance of the transducer is calculated
and then used to determine the optimal electrical operation mode
of the conditioning circuit, allowing a desired amplitude of the mo-
bile-mass vibration to be obtained. This paper highlights how the
parameters of the conditioning circuit and of the transducer im-
pact the transducer’s mechanical impedance, directly affecting the
impedance matching between the energy source (resonator) and
the transducer. This technique permits the design of highly effi-
cient VEHs whatever the means of transduction.

Index Terms—Electrostatic transducer, first-harmonic method,
mechanical impedance, mechanical impedance matching, vibra-
tion energy harvester (VEH).

I. INTRODUCTION

A. Objectives of This Study

V IBRATION energy harvesters (VEHs) convert the en-
ergy of ambient mechanical vibrations into electrical

energy. They are the main candidates for supplying abandoned
autonomous sensors in transport and industrial machines.
Numerous practical implementations have been made recently
[1]–[7], although most of these convert only a small part of the
available mechanical energy (under 10%) [8]. This means that
the interaction (also known as coupling) between the mechan-
ical resonator and the conditioning electronics is weak. This
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suggests that the designers’ effort should be focused on the
optimization of the electromechanical conversion, considering
the resonator, electrostatic transducer, and conditioning circuit
as a whole [6], [9]–[13].

A VEH efficiency close to the theoretical limit is only reach-
able if the VEH is designed to operate in the mode of strong
electromechanical coupling. The strong electromechanical cou-
pling operation of VEH takes place when the energy converted
by the electromechanical transducer is comparable with the en-
ergy related to the mechanical vibrations of the resonator (elastic
and kinetic energies). In this mode, the resonator’s mechanical
behavior impacts strongly on the operation of the electronics
connected to the transducer and vice versa: The electrical and
mechanical domain operations can no longer be considered sep-
arately.

In the existing literature, the theoretical investigation of VEH
operation in strong coupling mode has mainly been carried
out for piezoelectric [14], [15] and electromagnetic [16] VEHs
and for particular configurations of capacitive VEHs [12],
[17]. Most of these studies are based on the hypothesis of a
quasi-linear model of the electromechanical transducer. This
paper proposes a general theoretical and analytical framework,
allowing the description of VEH operation in the mode of
strong electromechanical coupling, without any hypothesis
about the linearity of operation and valid for VEHs with any
kind of electromechanical transducers.

B. Consequences of Strong Electromechanical Coupling

For a harvester composed of a second-order lossless resonator
and an electromechanical transducer of any nature, the absolute
upper limit of the power that can be extracted, i.e., converted
from the mechanical to electrical domain, is given by [18]

(1)

where is the maximum allowed displacement of the res-
onator mobile mass, is the resonator lumped mass, and and

are the angular frequency and the acceleration amplitude
of the external vibrations, respectively. The difficulties related
with strong electromechanical coupling analysis can be illus-
trated on the example of a capacitive VEH. If the resonator is
connected with a capacitive transducer operating in a triangular
constant-charge QU (charge-voltage) cycle [11], the theoretical
converted power is given by the well-known equation [19]

(2)
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where is the voltage across the transducer’s electrical ter-
minal when its capacity is maximal and is the angular fre-
quency of variations of the transducer capacitance. can be
different from if the capacity–displacement relation of the
transducer is nonmonotonic [20]. and are the max-
imal and minimal values of the transducer’s capacitance over
one period of the mobile-mass vibration. They depend on the
amplitude of the resonator vibrations and on the transducer’s
geometry.

For a given capacitive VEH, the value of the converted power
expressed by (2) should be lower than the value given by (1).
However, if is increased, from (2), it follows that the value
of is unbounded and can be greater than .
This apparent contradiction is explained by the fact that (2) is
obtained under a hypothesis where the values of and
are known and -independent. This is true for low values of

, where the electromechanical coupling is weak and the force
generated by the transducer on the resonator is negligible. If the
value of is high, this hypothesis no longer holds: In VEH,

and are related with the vibration amplitude of the
mobile mass, and at high voltages of the transducer, the vibra-
tion amplitude is significantly affected by the force generated by
the strongly biased electrostatic transducer. Hence, increasing

modifies the mass vibration amplitude and, consequently,
and so that the inequality al-

ways holds.
So far, there has been no general technique to predict the

mobile-mass vibration amplitude in such cases of strong
electromechanical coupling and, hence, the level of converted
power. The theory developed in this paper allows this predic-
tion, making possible an optimal design of VEHs.

C. Analysis Techniques of Electromechanical Energy
Conversion

In energy harvesting applications, the electromechanical
transducers often operate in large-signal mode, which implies
a strongly nonlinear behavior. There are two origins of non-
linearities. The first is related to the nonlinear mathematical
relation between the dynamic quantities of transducers (force,
voltage, strain, magnetic flux, displacement, etc.). In some
cases, these nonlinearities are smooth and can be neglected,
allowing analysis using a quasi-linear model [21], [22]. The
second source of nonlinearity is the possible switching and
nonlinear nature of the conditioning circuit operation. Even
in the simple harvesting scheme of piezoelectric harvesters
including a diode bridge and an output capacitive reservoir
[15], the voltage applied across the electrical terminal of the
transducer is a piecewise-defined wave. Here, the network
topology connected to the transducer changes four times over
one vibration period because of the switching behavior of the
diode bridge. Electrostatic transducers behave nonlinearly in
most cases because of the switching nonlinear conditioning
circuits required by the energy conversion principle [23].

A common technique used to analyze the harvester operation
consists in representing the transducer by its equivalent linear
electrical model and connecting this model to the electrical
schematic of the conditioning circuit. Such a system can be
analyzed with the methods of electrical network analysis.

However, this approach works only for cases where the non-
linearities of the transducer are smooth and, more importantly,
when the equivalent electrical model of the transducer does not
change with time. Typically, this is the case of harvesters using
a piezoelectric or electromagnetic electromechanical interface
[18], [24], [25]. The operation of an electrostatic transducer
is more complex: Its equivalent electrical model is strongly
nonlinear and time variant. For example, even for the simplest
harvesting scheme based on a constant-charge triangular QU
cycle [11], the electrical charge of the transducer capacitance
and the generated force depend in a discontinuous way on the
sign of the time derivative of the transducer capacitance (cf.
Section IV-A). However, linearization of electrostatic trans-
ducers is still the dominant approach in the published studies:
The capacitive transducer is often modeled as a spring [6], [26]
or as a damper [18], [27]. These representations are locally
correct on some time intervals of the transducer operation, but
do not adequately model the global operation of the system.

The electromechanical coupling phenomena have been
relatively well addressed in works dealing with piezoelectric
or electromagnetic transducers. However, most of the studies
of electrostatic transducers are focused on the conditioning
circuit operation or on the design/optimization of the res-
onator transducer block, with only a few considering the
coupled operation of both [7], [13], [24]. Our work highlights
that the operation mode and the topology of the conditioning
electronics are just as important as the geometry of the trans-
ducer for the performance of the overall system. The theory
proposed in this paper provides a general, simple, and rigorous
tool which allows the understanding and the quantitative de-
scription of the interaction between the conditioning circuit,
the resonator, and the transducer.

In this paper, we shall use the following naming conventions.
• Small letters shall denote the instantaneous real values of

dynamic quantities, e.g., for force, for the velocity, and
for electrical charge.

• Capital letters shall denote the amplitude of sinusoidal
quantities, e.g., and .

• Dotted capital letters shall denote the complex amplitudes
of sinusoidal quantities, e.g., and .

• Instantaneous voltages, currents, and capacitances shall be
denoted by capital , , and , respectively.

II. ANALYTICAL MODEL OF HARVESTER

A. Description of the System

Harvesting of mechanical energy is achieved in two stages.
First, a part of the mechanical energy of external vibrations
is captured by the mechanical part of the harvester, which is,
in most cases, composed of a mechanical resonator. Then, the
electromechanical transducer achieves the transformation of
this mechanical energy into an electrical form. The main role of
the conditioning circuit is to create an electrical context needed
for a proper operation of the electromechanical transducer.

Fig. 1 shows a general model for a mechanical energy
harvester. In the mechanical domain, there are two reference
frames: the global inertial frame , in which the external
vibrations take place with acceleration , and the reference



GALAYKO AND BASSET: ANALYTICAL TOOL FOR DESIGN OF VEHS BASED ON MECHANICAL IMPEDANCE CONCEPT 301

Fig. 1. General VEH diagram.

TABLE I
SUMMARY OF EQUIVALENCE BETWEEN MECHANICAL AND ELECTRICAL

QUANTITIES

frame related to the vibrating system in which the harvester
is located. Usually, the motion of the reference frame is
modeled by applying a force to the resonator ( is
the resonator’s mass), and then, the reference frame is con-
sidered as inertial [28]. The resonator can be modeled with its
lumped-parameter model composed of a mass , an elastic
spring (with stiffness ), and a viscous damper (with damping
coefficient ). The electromechanical transducer is a device
having two mechanical terminals: One is fixed with respect
to the reference frame, and the second is attached to the
moving mass. The transducer generates a force on the mass,
and this force depends on the distance between its terminals
(thus, on the mass position in the reference frame) and on
the transducer’s electrical state (voltage, current, etc.).

We suppose that the external acceleration is sinusoidal, with a
known amplitude and an angular frequency , ,
with being the vibration period. The resonator is supposed to
be narrow band, i.e., with a quality factor above 10, and is
close to the resonator’s resonance frequency.

The presented method is inspired by techniques used for
the analysis of electrical networks; hence, we use the electro-
mechanical equivalence for the representation of mechanical
quantities (cf. Table I). The mechanical system in Fig. 1 is
represented by the equivalent electrical network in Fig. 2.1 The
force is represented by an independent voltage source.
The transducer is represented by an electrical dipole whose
voltage (the force) depends, generally, on the displacement
and, thus, on the velocity (current). The mechanical resonator
is equivalent to a series network.

1Strictly speaking, two equivalent electromechanical analogy systems are
possible because of the duality of the electrical networks [29]. This paper uses
the equivalence definition in which the velocity is equivalent to the current.

depends not only on the transducer’s physical nature and
geometry but also on the associated electrical dynamic quan-
tities (voltage, charges, electrical or magnetic field, etc.). For
this reason, the presented theory deals with a block “transducer

conditioning electronics,” rather than with an isolated device
interfacing electrical and mechanical systems. This is a very
important point, which distinguishes this work from previously
proposed approaches.

B. First-Harmonic Method

This section presents how the nonlinearity of the VEH can be
dealt with through the use of the first-harmonic method.

If the external acceleration is periodic, it can be assumed that
all mechanical quantities of the harvester are periodic as well.
Although this is not exactly true on large timescales for com-
plex conditioning circuits [3], where the electric parameters of
the conditioning circuit change slowly in time, at a timescale of
several vibration periods, can be considered periodic. Here,
is not necessarily sinusoidal. For example, a quasi-linear piezo-
electric transducer associated with a sinusoidally vibrating res-
onator generates a sinusoidal force if connected with a linear re-
sistor, but the force is nonsinusoidal if the conditioning circuit
includes a diode bridge and a reservoir capacitor in parallel with
the load resistance [15]. The narrow-band hypothesis stated in
Section II-A implies that if a resonator is excited with a non-
sinusoidal periodic external force and if this force has the first
(fundamental) harmonic inside the passband of the resonator,
the upper harmonics of the force are attenuated by the resonator
frequency response, and the oscillations of the resonator can
be considered as sinusoidal at the fundamental frequency of
the external excitation. In this case, the higher harmonics of
the force can be neglected. This assumption is the base of the
first-harmonic method, which is a simplified version of the har-
monic balance method [30]. Our analysis is only valid for the
cases where this assumption is valid, i.e., where the energy in-
jected in the mechanical system by the fundamental harmonic
of the nonlinear force is much greater than the energy injected
by the higher harmonics (e.g., the former representing 90% of
the overall energy injected by this force).

Fig. 3 shows the transducer as a nonlinear operator which
receives a sinusoidal signal at the input (the transducer’s mo-
bile mechanical terminal displacement) and outputs a nonsinu-
soidal periodic force. Considering only the fundamental har-
monic of the output quantity means representing the transducer
by a model which reproduces a summarized contribution of the
nonlinear properties of the transducer. This model is only char-
acterized by a ratio between the amplitudes of the input and
output quantities and by the phase shift, i.e., by a complex trans-
mission coefficient which is redefined for each amplitude value
of the input signal. In this sense, the equivalent model is not
linear, but it can be dealt with as linear in the context in which the
input amplitude is constant, i.e., in the analysis of the asymptotic
(steady-state) behavior of the system. Hence, in the further anal-
ysis, the nonlinear element of the network in Fig. 2 is replaced
with a dipole responding to a sinusoidal current (velocity) by a
sinusoidal voltage (transducer’s force): Such an element can be
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Fig. 2. Equivalent electrical representation of the harvester in the mechanical
domain.

Fig. 3. Representation of nonlinear electromechanical transducer in the first-
harmonic method.

characterized by a mechanical impedance, and the whole net-
work can be analyzed as linear.

C. Mechanical Impedance of Nonlinear Transducer

Usually, an impedance is defined for linear electrical systems
submitted to sinusoidal excitations. The mechanical impedance

is defined equivalently to its electrical counterpart

(3)

where and are the complex amplitudes of the sinusoidal
force and velocity of the point of force application, respectively.
The complex amplitudes can be obtained by calculating the fun-
damental coefficients of the complex Fourier series.

As we said, is generally nonsinusoidal. For this reason, the
impedance definition of (3) is not applicable for the transducer
and, in the context of the first-harmonic analysis, should be re-
defined as the ratio between minus the complex amplitude of the
fundamental harmonic of and the complex amplitude of
the sinusoidal velocity of the moving terminal of the transducer

(4)

Because of the nonlinear relation between the force and the
resonator displacement, the mechanical transducer’s impedance
depends on the mobile terminal displacement amplitude.

The transducer’s force depends on the transducer’s elec-
trical state defined by the conditioning circuit. Hence, the defi-
nition of the mechanical impedance of a transducer can only be
done for the whole system composed of the transducer and of the
conditioning circuit with its specified operation mode. The op-
eration mode can be characterized by a set of parameters which
we call . The transducer’s impedance is a complex-value func-
tion of these parameters.

Calculation of the transducer’s mechanical impedance is
quite complex even for simple harvesting systems and, in
many cases, can only be obtained numerically. We propose the
following general procedure, which is applicable to VEHs with
any nature of electromechanical transducer. First, the value of

the velocity amplitude for which the transducer’s impedance
is calculated is fixed. The mobile electrode of the transducer is
supposed to have a sinusoidal motion with velocity

(5)

where and are the amplitude and the initial phase of the
mobile terminal displacement. The value of does not matter
in the impedance calculation and can be fixed arbitrarily. If
the transducer and the conditioning circuit have internal energy
states, they must be initially defined. These initial parameters of
the conditioning circuit can be included in the vector .

Then, under this hypothesis of the mobile-mass displacement,
the electrical quantities defining the transducer’s force are cal-
culated using the model of the transducer and of the condi-
tioning circuit. From these quantities, the force generated by
the transducer on one mobile-mass vibration period is calcu-
lated. The mechanical impedance of the transducer is then cal-
culated using (4), with and obtained as the fundamental
coefficient of the complex Fourier series calculated for and

, respectively.
The calculation of is the most complex step of this proce-

dure. It depends on the system “transducer conditioning cir-
cuit.” In the case of piezoelectric VEHs, the transducer sub-
mitted to a deformation (strain) generates a current which, inter-
acting with the conditioning circuit, results in some voltage on
the piezoelectric transducer’s electrodes. Hence, a mechanical
force applied to the resonator is generated by the transducer.
In the case of electromagnetic VEHs, the imposed displace-
ment of a coil or magnet results in an induced electromotive
force, which, interacting with the conditioning circuit, results in
a current in the coil, which generates a force when interacting
with the magnet. For electrostatic VEHs, the detailed descrip-
tion of the transducer’s impedance calculation will be given in
Section IV.

The next section demonstrates the practical use of the me-
chanical impedance definition in the analysis of mechanical en-
ergy harvesters.

III. ANALYSIS OF VEHS THROUGH THE CONCEPT OF

MECHANICAL IMPEDANCE

A. Principle

The second Newtonian law written for the mobile mass is
equivalent to the mesh equation for the network in Fig. 2. In
steady-state harmonic mode, the complex amplitudes of the dy-
namic quantities are defined by

(6)

where is the mechanical impedance of the resonator given
by

(7)

and is the complex amplitude of the external vibration’s ac-
celeration. This is a nonlinear equation, since and both de-
pend on . The solution to the problem presented in Section I-B,



GALAYKO AND BASSET: ANALYTICAL TOOL FOR DESIGN OF VEHS BASED ON MECHANICAL IMPEDANCE CONCEPT 303

i.e., finding the mass displacement amplitude corresponding to
a given and to a given conditioning circuit, is simply found
by equating the absolute values of both parts of (6)

(8)

This equation is algebraic and nonlinear and can have several so-
lutions. The resolution of (8) requires a knowledge of the trans-
ducer impedance function which is found following the
procedure described in Section II-C.

However, in the context of harvester design, the problem is in-
verse: how to find the operation mode of the conditioning circuit
to ensure a given vibration amplitude defined by the resonator
geometric constraints, whereby the maximal harvesting power
can be achieved. For this case, (8) is rewritten

(9)

If is fixed, this equation uniquely defines the modulus of
the total impedance of the system . On an
impedance chart, the corresponding locus is the circle

. The set of solutions is given by the intersection
of this circle with the locus plotted on the same
chart, when the components of the vector vary in the allowed
range. The solution set can contain zero, one, or many points,
depending on the shape of the locus. In the language
of complex amplitudes, the real harvested power is then given
by [29]

(10)

Since is fixed, among several possible solutions, the max-
imal harvested power corresponds to the solution point on the
impedance chart for which is maximal.

Equation (10) suggests that, to maximize the harvested
power, both the amplitude and the real part of the trans-
ducer’s impedance are to be maximized. Indeed, this is true in
most practical cases. However, as we said before, and
are not mathematically independent, and in principle, there
can exist a configuration of VEHs in which, at least for some
range of values, the harvested power is higher for smaller
amplitudes.

B. Stability of Solutions

The aforementioned analysis allows one to find the asymp-
totic solutions of oscillator equations, but it does not guarantee
that the obtained solutions are stable. The problem of instability
can be illustrated as follows. In a harvesting system, the trans-
ducer mechanical impedance depends on the mobile-mass vi-
bration velocity amplitude, i.e., . The transducer is
mechanically connected to a resonator having an impedance .
Hence, the total complex mechanical load impeding to the ex-
ternal force has an impedance .
Let us assume that the system behaves following an asymptotic
solution with velocity amplitude and that there is a perturba-
tion (for example, an irregularity on the external vibration ac-
celeration function) such that the velocity amplitude increases
by and temporarily becomes . After the end

of the perturbation, a stable system comes back to the asymp-
totic solution with the amplitude after some time, whereas
an unstable system goes away from this solution and comes to
another stable solution or diverges. This is the definition of the
amplitude stability we use for our system. On the basis of this
definition, here, we present the derivation of a necessary and suf-
ficient amplitude stability criterion for an asymptotic solution.

To find the necessary criterion, we suppose that the studied
system is stable according to the aforementioned amplitude sta-
bility definition and remains in the steady state corresponding to
the amplitude . If, immediately after the end of a small pertur-
bation, the system has the vibration amplitude , at
this moment, the total mechanical impedance of the system
equals to . From (8) to this impedance value
and to the external force, corresponds to an asymptotic
vibration amplitude

(11)

If , the system cannot remain in the perturbed state
with the amplitude and tends to adjust its amplitude to .2
It means that the amplitude changes in the direction of . We
note that is not the actual (new) stable state: When the system
changes the amplitude in the direction of , the transducer’s
impedance changes and the “target” amplitude of the system is
not anymore. However, the position of is important, since
it defines the dynamics of the system after the perturbation: If
the amplitude is closer to than to , after the perturbation,
the amplitude tends toward , asymptotically approaching the
initial unperturbed state . This happens if the system is stable,
since in this case, the system’s dynamics reduces the perturba-
tion. Mathematically, this necessary stability condition can be
expressed in the following way:

(12)

Given and
, we have

(13)

or if

(14)

Given that, from (6), , we have

(15)

The last equation provides a simple necessary stability crite-
rion for a given solution. It is also a sufficient criterion: To prove
it, it is enough to prove the contraposition, i.e., to show through

2If not, it means that, in the vicinity of , there is an infinite set of solutions
for (8). Such a case is not practical and is not considered here. For this demon-
stration, we suppose that the set of equation (8) roots is countable (so is for the
set of steady states of the VEH), and moreover, the roots are spaced by a finite
distance.
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Fig. 4. Conditioning circuit for electrostatic transducer implementing a charge-
constant energy conversion (Fig. 5) [11].

Fig. 5. QU cycle corresponding to the constant-charge energy conversion with
electrostatic transducer.

the same reasoning that, for the unstable solution of (8), the in-
equality (15) has the opposite sign. It is interesting to note that
this stability criterion is defined for a given velocity amplitude

, value of , and angular frequency and does not depend on
the amplitude of the external force. If the system mechanical
impedance and its evolution through is known, the relation
(15) provides the information about the unstable amplitude set
in which the system cannot remain at the given frequency.

IV. STUDY OF THREE VEH’S GEOMETRIES USING

ELECTROSTATIC CONVERSION

In this section, we apply the presented analysis method to
the most simple and well-known electrostatic harvesting scheme
using a triangular constant-charge QU cycle (Fig. 5) [11]. This
configuration will be studied with three transducers having dif-
ferent characteristics.

A. Presentation of the System

The simplest charge-constant electrostatic harvester is com-
posed of a reservoir capacitor precharged to some initial
voltage , a resonator/transducer device with variable trans-
ducer capacitance , an inductor, and two switches (Fig. 4).
The inductor is used as an energy buffer for lossless energy ex-
change between and .3 The circuit operates in the fol-
lowing way [19]. In the initial state (point O), the transducer ca-
pacitance is maximal and is discharged. At this moment,
the switch becomes ON, becomes OFF, and the in-
ductor is charged by the capacitor so that its current
increases to some value . Then, becomes OFF, be-
comes ON, and the energy of the inductor is transferred to ,
charging it to some charge . This process corresponds to the
line and is supposed to be very fast, compared with the pe-
riod of the variation. Then, the switches are OFF and the

3Without an inductor, an energy exchange between two capacitors always
implies losses.

transducer capacitances decrease, increasing the voltage and the
energy of (line AB). When is minimal, its energy is
quickly transferred to using again the inductor as an energy
buffer (line BO). Then, the transducer’s capacitor is discharged
and increases until again, returning the circuit in the
initial point of the cycle.

The initial charge defines the initial voltage as
and is the key parameter for the energy yield of

the harvester, as indicated in (2). is defined by the maximal
value of the inductor current and by the maximal value of
the transducer capacitor on the vibration cycle, with the latter
depending on the resonator vibration amplitude. Thus, from the
equality of energies , is given by

(16)

In this demonstration, we consider as a free design parameter
whose choice must optimize the operation of the system (e.g.,
must maximize the energy yield). Supposing that is large
and its voltage is nearly constant, is determined as

(17)

where is the time interval during which the switch is
on. The value of is fixed by the appropriate choice of .

In the next sections, we shall present the analysis with three
transducers having different characteristics along
the mobile-mass trajectory: linear, triangular, and hyperbolic
(Fig. 6). The vector of design parameters introduced in
Section II-C includes only . For the three cases, we calculate
the mechanical impedance of the transducer/conditioning cir-
cuit block as a function of the operation parameter . We fix
the following design objective: to determine the appropriate
value of such that the mass vibration amplitude fits with the
maximum value given by the transducer geometry. Apart from

, all parameters of the harvester are known and fixed and are
given in Table II. We intentionally choose the transducer’s
characteristics such that they have the same and

at the desired mass vibration amplitude m.
This will allow us to highlight the behavior differences due to
the various shapes of the characteristics.

The three studied configurations operate in the mode of
strong electromechanical coupling. Indeed, without a trans-
ducer or with a deactivated conditioning circuit, the amplitude
of the resonator vibration is 68 m (can be obtained using the
values of Table II and the (9) with ). Hence, with the
value of corresponding to the design objective, the presence
of the transducer and conditioning circuit has to decrease the
mass vibration amplitude to m, i.e., by 26%.

B. Area-Overlap Transducer

In the simplest case, is linear, which corresponds to
the in-plane moving transducer with variable electrode overlap
area. This is typically the case for transducers having a comb-
drive geometry [31]

(18)
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Fig. 6. characteristics of the capacitive transducers used in this study.

TABLE II
PARAMETERS OF THE MODELED SYSTEM

where and are constant positive parameters depending on
the transducer’s dimensions. In Fig. 6, pF and

.
1) Mechanical Impedance of Area-Overlap Transducer: The

voltage on can be easily expressed considering cosinu-
soidal motion of the mobile electrode, with the initial phase
chosen at zero

(19)

The voltage across is nonzero only when its capacitance
decreases. Hence, we have

(20)

Here, we suppose that the charge/discharge of the variable ca-
pacitor are instantaneous.

For the transducer force, we have

(21)

(22)

The first coefficient of the complex Fourier series of is
given by

(23)

A closed form of this integral can be found if the real and imag-
inary parts are calculated separately. We obtain

(24)

where .
From (16) and given , we have

(25)

(26)

The complex amplitude of velocity is given by

(27)

since from (19).
Thus, for the impedance, we have, from (4)

(28)

The total mechanical impedance is complex and depends on the
vibration amplitude (represented by ). The transducer can be
modeled by a linear damper and a linear spring with positive
stiffness: Indeed, the mechanical impedance of a linear damper
is positive and real, and the mechanical impedance of a spring
is of form , where is the spring stiffness.

It is interesting to highlight the link between the transducer’s
impedance and the mechanical power calculated by (10) and (2).
From the mechanical point of view, with (10), we have for the
real power

(29)

Submitting, in (29), the relations between , , , ,
, and valid for an area-overlap transducer described

by (18), we exactly get (2). The expressions for the power given
by (2) and (10) obtained from the consideration of mechanical
and electrical behaviors, respectively, give exactly the same
results. This suggests that our theory is consistent.

A nonzero imaginary part of the transducer’s mechanical
impedance explains the phenomenon of the resonance fre-



306 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 2, FEBRUARY 2011

Fig. 7. Graphic resolution of (30) for area-overlap transducer. is plotted for mA.

quency shift of the resonator sometimes observed in practice
[32]. Using the obtained mechanical impedance equation, it is
possible to account for this shift and to design the harvester
having a desired resonance frequency, or even to design a
system able to adapt its resonance frequency to the frequency
of external vibrations [33].

2) Calculation of the Charging Current : Here, we show
how to determine the current needed to ensure the desired
vibration amplitude of the mobile mass. This is done using
(9) which gives all possible values of , allowing one to obtain
the needed vibration amplitude

(30)

To solve (30), one can use a graphical method, as shown in
Fig. 7. The horizontal and vertical axes represent the real and
imaginary parts of mechanical impedance, respectively. On this
chart, we plot the overall mechanical impedance of the system

for the current range that is expected
to include the solution(s) (dots) and the locus corresponding to

(plain line). The intersections between
these two loci correspond to the values of , ensuring the de-
sired amplitude . Among them, the optimal value of cor-
responds to the rightmost point on the impedance chart. In this
configuration, there is only one intersection point corresponding
to mA.

3) Validation of the Result: The aforementioned analysis
of the harvester is validated by a behavioral modeling in the
VHDL-AMS model [34]. This model had been previously val-
idated with a tested electrostatic VEH [20], and for the present
study, it was parameterized with the values presented in Table II
and the calculated value of the current mA. Running
the simulation, we obtained the amplitude of 51 m, as shown
in the plot of the mobile-mass position (Fig. 8). The 2% differ-
ence from the aimed amplitude is explained by the fact that the
dc component of the transducer’s force was not accounted for.
A 2.5- m shift of the average mass position from zero is shown
in Fig. 8. This modifies the variation range compared with

what was assumed in the analysis, producing a small modifica-
tion of the solution of the mechanical equation.

This simulation suggests that the solution is stable, which can
be checked with the stability criterion given by (15).

C. Transducer With Triangular Characteristic

In this section, we apply the aforementioned analysis to a har-
vester having the same architecture and using the same mechan-
ical resonator but employing a capacitive transducer exhibiting
a triangular characteristic (Fig. 6). All other parame-
ters of the system are identical, except that in the model of the
transducer where we added stoppers, limiting the vibration am-
plitude to m from the equilibrium position of the mobile
mass. A transducer with a similar shape was presented
in [35].

1) Calculation of and Validation: Given the complexity
of , the mechanical impedance can only be calculated
numerically. As for the case of the area-overlap transducer, we
suppose that the mass displacement is given by (19). Thus, since
the capacity decreases from to during the
first and third quarter periods, is expressed with (31)

or

or
(31)

The first coefficient of the complex Fourier series is found
from the waveform of and is used for calculation.

Fig. 9 shows the loci corresponding to
and , for m and for the same
range of as in Fig. 7. The intersection of these loci corresponds
to mA.

The modeling perfectly confirms this prediction. With
mA, after a transient process (Fig. 10), the mass vibration

magnitude stabilizes at the value of 50 m.
2) Case With Two Possible Solutions: In the two previous

cases, the analysis resulted in a unique value of the current to
achieve the desired vibration amplitude. However, in a different
environment, (30) can provide two solutions, as shown by the
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Fig. 8. Transient behavior of harvester with area-overlap transducer.

following example. If the same analysis is done, with an external
vibration frequency of 255 Hz instead of 285 Hz and
with an external vibration amplitude of 21 ms instead
of 15 ms , the resonator mechanical impedance is now at
the semiplane corresponding to negative , close to the
imaginary axis, and out of the circle
(Fig. 11). As the transducer impedance is inversely proportional
to the frequency, it does not change much when the frequency
changes from 285 to 255 Hz. Thus, the locus is similar to that
at a frequency of 285 Hz but is shifted so that, when ,
is equal to the new value. It can be seen that, now, there are
two solution points, which means that the same displacement
amplitude of 50 m is obtained with and 6.13 mA. The
stability analysis indicates that these points are stable; thus, the
designer has to choose between them. To optimize the converted
power (10), the real part of the impedance must be maximized.
Hence, among the two obtained values of , the designer should
choose the value giving the maximal real part of the impedance,
i.e., corresponding to the rightmost solution point on the plot in
Fig. 11.

D. Transducer With Hyperbolic Function

In this section, we study a VEH with a very common trans-
ducer known as a gap-closing transducer. It corresponds to a
parallel-plate capacitor, whose electrodes move in the axis per-
pendicular to the plane defining their surface. In this case,
is inversely proportional to the displacement

(32)

where and are the and the gap between the electrodes
at , respectively.

We choose and so that, at the desired displacement am-
plitude m, and are the same as those in
the two previous cases

m (33)

F (34)

This case is the only configuration of electrostatic-based VEHs
whose rigorous analysis can be found in literature [36].

1) Impedance Calculation: is monotonic; thus, the
system behaves exactly as in the case of the area-overlap trans-
ducer, except that the transducer’s voltage and force are
now equal to

(35)

(36)

(37)

Note that the expression of the force corresponds to the
Coulombian damping force mentioned in [18] which is defined
as , where is a constant and is
the velocity of the force application point. Hence, (37) defines a
Coulombian damping force superposed to a constant bias force
(cf. Section IV-D-3).

From (37), we obtain the first coefficient of the complex
Fourier transform

(38)

and from (4), at the desired amplitude , the transducer’s
impedance is given by

(39)

Thus, a gap-closing variable capacitor, when used in the tri-
angular constant-charge QU cycle, has a purely real impedance,
i.e., it behaves like a viscous nonlinear damper.
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Fig. 9. Graphic resolution of (30) for the triangular characteristic transducer for the single-solution case. is plotted for mA.

Fig. 10. Transient behavior of harvester with the triangular character-
istic transducer.

2) Calculation of : Varying the current from 1 to 10
mA, we obtain the total mechanical impedance evolution
given in Fig. 12. The unique current value yielding a vibration
amplitude of 50 m is 6.05 mA. This result is found analytically
from (12) and (39) and is validated by behavioral modeling.

3) Comparison With Published Coulombian-Force Damped
Harvesting Schemes: It is interesting to compare these results
with the analysis done for the Coulombian-force damped res-
onator in [36] and reused in [18]. In this harvesting scheme, the
force generated by the transducer is always opposite to the
velocity of the mass motion and is equal to

(40)

where is a constant.
This case is very similar with our configuration. The only dif-

ference concerns the continuous (mean) component of which
is zero in (40) and is equal to half of the maximal force value

in (37). However, since the system has a passband frequency re-
sponse, this bias component can be neglected.

The analysis in [36] was carried out for a lossless
second-order lumped-parameter mass–spring system excited
by external sinusoidal vibrations through mechanical supports
and submitted to a Coulombian damping force. The amplitude
and the vibrations of the mass are calculated with regard to the
resonator support (anchor). For the vibration amplitude, the
following is obtained:

(41)

where is the amplitude of the mass vibrations with regard
to the resonator support, is the amplitude of the external vi-
brations, is the frequency of the external vibrations normal-
ized to the natural resonance frequency of the mass–spring
system , is the amplitude of the acceleration
of the external vibrations, is the absolute value of the Coulom-
bian force, and is given by

(42)

Unlike our model, in this analysis, the intrinsic damping coeffi-
cient of the transducer was considered zero, i.e., , and no
hypothesis was made on the frequency of the resonator excita-
tion (cf. Section II-A).

To compare this expression with what is predicted by our
theory, we calculate using the transducer’s impedance.
For this, we use (8), which gives the amplitude of the mass ve-
locity. The mechanical impedance of the undamped resonator is
given by

(43)

The Coulombian force generated by the gap-closing electro-
static transducer operating in the triangular charge-constant QU
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Fig. 11. Graphic resolution of (30) for the triangular characteristic transducer, for the case of two solutions. is plotted for mA.

Fig. 12. Graphic resolution of (30) for the transducer with hyperbolic . is plotted for mA.

cycle is half of the force it generates when the transducer’s ca-
pacity decreases. Thus, from (37) and (40), we have

(44)

and from (39), the transducer’s impedance is given by

(45)

From (8), (43), and (45), we have

(46)

Taking , from this equation, we obtain

(47)

Given , we obtain

(48)

To compare this with the Hartog’s equation (41), we per-
formed a limit development of the function
when , i.e., when the frequency of the external vibration
is near the resonance. We get

(49)

From (41) and (49), we have

(50)
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Fig. 13. Mechanical impedance of the transducers in the three studied cases against . changes from 0 to 10 mA, with 1-mA step.

Near resonance, and the last equation is governed by
and : With this approximation, (50) is iden-

tical to (48). Hence, near resonance, our theory gives exactly the
same result as the theory of Hartog, however, through a much
simpler and more straightforward analytical development.

V. DISCUSSIONS

Fig. 13 shows the evolution of the transducer’s impedance
over the variation in the three studied cases. The differences
in the impedance’s plots come only from the differences in the
shapes of curves, since all other operation parameters
are identical in the three configurations (the amplitude and fre-
quency of the mobile electrode displacement, and ,
and, hence, from (16) for each ). Considering the real parts
of the impedances, we can see that, for each , they are iden-
tical for the area-overlap and the gap-closing transducer, and
the real part of the triangular characteristic transducer
impedance is twice the corresponding values of the other two
transducers. From (10), we may conclude that the corresponding
values of the converted power are in the same relation. Equation
(2) provides the same results: All the variables of this equation
have the same values for the three cases except the frequency of

variation which is equal to the frequency of the mechan-
ical vibration for the hyperbolic and area-overlap transducers
and is twice this value for the triangular characteristic
transducer. This similarity of results is to be expected, as (2)
and (10) calculate the same quantity in different ways. Hence,
for the considered harvesting scheme, the real part of the me-
chanical impedance of the capacitive transducer can be easily
deduced from these two equations if , , , , and

are known. It does not depend on the shape of the
characteristic, as long as the latter is monotonic, but only on the
values of at the extreme positions of the mobile elec-
trode.

However, the imaginary part of the impedance depends
strongly on the shape of . Let us consider the
area-overlap and gap-closing transducers. In the first case,
at mA, the value of is N s m ; in

the second case, it is zero for all (Fig. 13). However, the
corresponding characteristics are numerically close:
For each , they differ by less than 10% (Fig. 6). Such sen-
sitivity of the imaginary part of the mechanical impedance to
the shape of is a very important result with significant
impact on potential practical applications. The imaginary part
of the impedance is responsible for the mechanical impedance
matching between the transducer and the resonator and has
a direct impact on the energy yield of the system. Moreover,
not only the absolute value but also the sign of the imaginary
part of the transducer’s impedance is impacted by the
shape. The sign of defines the direction of the shift of the
system resonance frequency. This shift, being dependent on the
electrical parameters of the conditioning circuit, means that an
electrical tuning of the resonance frequency of the harvester can
be achieved, allowing the broadening of the system bandwidth.

VI. CONCLUSION

This study has resulted in the development of a new analytical
tool which enables one to address a large spectrum of practical
issues related to the dynamic behavior of narrow-band VEHs.
The mechanical impedance of a transducer is a universal crite-
rion characterizing the efficiency of the power interface between
the mechanical and the electrical domain. It is applicable to har-
vesters with any kind of electromechanical transducers and with
any topology of conditioning circuit. For the first time, the rela-
tion between the shape of the transducer’s characteristic
and its mechanical impedance was highlighted and character-
ized.

The results of this study can be used to design the next genera-
tion of optimized conditioning circuits of VEHs, with the ability
of smart behavior to dynamically adapt to variations of the ex-
ternal vibration parameters [37].

REFERENCES

[1] E. O. Torres and G. A. Rincón-Mora, “Electrostatic energy-harvesting
and battery-charging CMOS system prototype,” IEEE Trans. Circuits
Syst.—I: Reg. Papers, vol. 56, no. 9, pp. 1938–1948, Sep. 2009.



GALAYKO AND BASSET: ANALYTICAL TOOL FOR DESIGN OF VEHS BASED ON MECHANICAL IMPEDANCE CONCEPT 311

[2] P. Basset, D. Galayko, A. M. Paracha, F. Marty, A. Dudka, and T.
Bourouina, “A batch-fabricated and electret-free silicon electrostatic
vibration energy harvester,” J. Micromech. Microeng., vol. 19, no. 11,
p. 115 025, Nov. 2009.

[3] B. C. Yen and J. H. Lang, “A variable-capacitance vibration-to-electric
energy harvester,” IEEE Trans. Circuits Syst.—I: Reg. Papers, vol. 53,
no. 2, pp. 288–295, Feb. 2006.

[4] H. Lhermet, C. Condemine, M. Plissonier, R. Salot, P. Audebert, and
M. Rosset, “Efficient power management circuit: Thermal energy
harvesting to above-IC microbattery energy storage,” in Proc. ISSCC,
2007, pp. 62–587.

[5] M. Marzencki, Y. Ammar, and S. Basrour, “Integrated power har-
vesting system including a MEMS generator and a power management
circuit,” Sens. Actuators A, Phys., vol. 145/146, pp. 363–370, Jul./Aug.
2008.

[6] G. Despesse, T. Jager, J. J. Chaillout, J. M. Léger, A. Vassilev, S. Bas-
rour, and B. Charlot, “Fabrication and characterization of high damping
electrostatic micro devices for vibration energy scavenging,” in Proc.
DTIP MEMS MOEMS Conf., 2005, pp. 386–390.

[7] S. Roundy and P. K. Wright, “A piezoelectric vibration based gener-
ator for wireless electronics,” Smart Mater. Struct., vol. 13, no. 5, pp.
1131–1142, Aug. 2004.

[8] P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T.
C. Green, “Energy harvesting from human and machine motion for
wireless electronic devices,” Proc. IEEE, vol. 96, no. 9, pp. 1457–1486,
Sep. 2008.

[9] J. K. Ward and S. Behrens, “Adaptive learning algorithms for vibration
energy harvesting,” Smart Mater. Struct., vol. 17, no. 3, p. 035 025,
Apr. 2008.

[10] M. Lallart, L. Garbuio, L. Petit, C. Richard, and D. Guyomar, “Double
synchronized switch harvesting (DSSH): A new energy harvesting
scheme for efficient energy extraction,” IEEE Trans. Ultrason., Ferro-
electr., Freq. Control, vol. 55, no. 10, pp. 2119–2130, Oct. 2008.

[11] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. P. Chandrakasan,
and J. H. Lang, “Vibration-to-electric energy conversion,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 9, no. 1, pp. 64–76, Feb.
2001.

[12] W. Ma, R. Zhu, L. Rufer, Y. Zohar, and M. Wong, “An integrated
floating-electrode electric microgenerator,” J. Microelectromech. Syst.,
vol. 16, no. 1, pp. 29–37, Feb. 2007.

[13] G. K. Rao, P. D. Mitcheson, and T. C. Green, “Mixed electromechan-
ical simulation of electrostatic microgenerator using custom-semicon-
ductor device models,” in Proc. PowerMEMS Conf., Nov. 2009, pp.
356–359.

[14] Y. Liao and H. A. Sodano, “Model of a single mode energy harvester
and properties for optimal power generation,” Smart Mater. Struct., vol.
17, no. 6, p. 065 026, Nov. 2008.

[15] Y. C. Shu and I. C. Lien, “Efficiency of energy conversion for a piezo-
electric power harvesting system,” J. Micromech. Microeng., vol. 16,
no. 11, pp. 2429–2438, Sep. 2006.

[16] S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O’Donnell,
C. R. Saha, and S. Roy, “A micro electromagnetic generator for vi-
bration energy harvesting,” J. Micromech. Microeng., vol. 17, no. 7, p.
1257, Jun. 2007.

[17] G. G. Yaralioglu, A. S. Ergun, B. Bayram, E. Hzggstrom, and B. T.
Khuri-Yakub, “Calculation and measurement of electromechanical
coupling coefficient of capacitive micromachined ultrasonic trans-
ducers,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 50,
no. 4, pp. 449–456, Apr. 2003.

[18] P. D. Mitcheson, T. C. Green, E. M. Yeatman, and A. S. Holmes, “Ar-
chitectures for vibration-driven micropower generators,” J. Microelec-
tromech. Syst., vol. 13, no. 3, pp. 429–440, Jun. 2004.

[19] J. O. M. Miranda, “Electrostatic vibration-to-electric energy conver-
sion,” Ph.D. dissertation, MIT, Cambridge, MA, Feb. 2004.

[20] A. M. Paracha, P. Basset, D. Galayko, F. Marty, and T. Bourouina,
“A silicon MEMS DC/DC converter for autonomous vibration-to-elec-
trical energy scavenger,” IEEE Electron Device Lett., vol. 30, no. 5, pp.
481–483, May 2009.

[21] S. Roundy, “On the effectiveness of vibration-based energy har-
vesting,” J. Intell. Mater. Syst. Struct., vol. 16, no. 10, pp. 809–823,
Oct. 2005.

[22] E. Halvorsen, “Energy harvesters driven by broadband random vibra-
tions,” J. Microelectromech. Syst., vol. 17, no. 5, pp. 1061–1071, Oct.
2008.

[23] P. D. Mitcheson, T. Sterken, C. He, M. Kiziroglou, E. M. Yeatman,
and R. Puers, “Electrostatic microgenerators,” Meas. Control J.—Lond.
Inst. Meas. Control, vol. 41, no. 4, p. 114, 2008.

[24] B. O. het Veld, D. Hohlfeld, and V. Pop, “Harvesting mechanical en-
ergy for ambient intelligent devices,” Inf. Syst. Frontier, vol. 11, no. 1,
pp. 7–18, Mar. 2009.

[25] J. L. Kauffman and G. A. Lesieutre, “A low-order model for the de-
sign of piezoelectric energy harvesting devices,” J. Intell. Mater. Syst.
Struct., vol. 20, no. 5, pp. 495–504, Mar. 2009.

[26] Y. Chiu and V. F. G. Tseng, “A capacitive vibration-to-electricity en-
ergy converter with integrated mechanical switches,” J. Micromech.
Microeng., vol. 18, no. 10, p. 104 004, Sep. 2008.

[27] M. S. M. Soliman, E. M. Abdel-Rahman, E. F. El-Saadany, and R.
R. Mansour, “A wideband vibration-based energy harvester,” J. Mi-
cromech. Microeng., vol. 18, no. 11, p. 115 021, Oct. 2008.

[28] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics: Me-
chanics. Oxford, U.K.: Butterworth–Heinemann, 1976.

[29] I. Tskv, Circuit Theory. Noida, India: Tata McGraw-Hill, 1985.
[30] E. S. Levitan, “Forced oscillation of a spring–mass system having com-

bined Coulomb and viscous damping,” J. Acoust. Soc. Amer., vol. 32,
no. 10, pp. 1265–1269, Oct. 1960.

[31] W. C. Tang, T.-C. H. Nguyen, M. W. Judy, and R. T. Howe, “Electro-
static-comb drive of lateral polysilicon resonators,” Sens. Actuators A,
Phys., vol. 21, no. 1–3, pp. 328–331, Feb. 1990.

[32] G. Despesse, “Etude des phénomènes physiques utilisables pour
alimenter en énergie électrique des micro-systèmes communicants,”
Ph.D. dissertation, Institut National Polytechnique de Grenoble,
Grenoble, France, 2005.

[33] J. J. Yao and N. C. MacDonald, “A micromachined single-crystal sil-
icon tunable resonator,” J. Micromech. Microeng., vol. 5, no. 3, pp.
257–264, 1996.

[34] D. Galayko, R. Pizarro, B. Philippe, A. M. Paracha, and G. Amendola,
“AMS modeling of controlled switch for design optimization of capac-
itive vibration energy harvester,” in Proc. Behav. Model. Simul. Conf.,
Sep. 2007, pp. 115–120.

[35] A. M. Paracha, P. Basset, P. Lim, F. Marty, and T. Bourouina, “A bulk
silicon-based vibration-to-electric energy converter using an in-plane
overlap plate (IPOP) mechanism,” in Proc. PowerMEMS, 2006, pp.
169–172.

[36] J. P. Den Hartog, “Forced vibrations with combined Coulomb and vis-
cous friction,” J. Appl. Mech., vol. 53, pp. 107–115, Dec. 1931.

[37] A. Dudka, D. Galayko, and P. Basset, “Smart adaptive power manage-
ment in electrostatic harvester of vibration energy,” in Proc. Power-
MEMS Conf., 2009, pp. 257–260.

Dimitri Galayko received the B.S. degree from
Odessa National Polytechnic University, Odessa,
Ukraine, in 1998, the M.S. degree from the National
Institute of Applied Science in Lyon (INSA-LYON),
Lyon, France, in 1999, and the Ph.D. degree from the
University of Lille 1, Villeneuve d’Ascq, France, in
2002, where he made his Ph.D. thesis in the Institute
for Electronics, Microelectronics and Nanotech-
nology (IEMN). The topic of his Ph.D. dissertation
was the design of microelectromechanical silicon
filters and resonators for radiocommunications.

Since 2005, he has been an Associate Professor with Université Pierre et
Marie Curie—Paris 6 (UPMC), Paris, France, in the Laboratoire d’Informatique
de Paris 6. His research interests include the design of integrated analog and
mixed circuits and design of integrated interfaces with sensors.

Philippe Basset received the Engineering Diploma
in electronics from the Institut Supérieur d’Electron-
ique et du Numérique (ISEN), Lille, France, in 1997,
and the M.Sc. and Ph.D. degrees from the Institute of
Electronics, Microelectronics and Nanotechnology
(IEMN), University of Lille 1, in 1999 and 2003,
respectively.

In 2004, he was a Postdoc in Garry Fedder’s group
at Carnegie Mellon University, Pittsburgh, PA. In
2005, he joined ESIEE Paris, Université Paris-Est,
Noisy-le-Grand, France, where he is currently an

Associate Professor. His research interests are in the area of microelectrome-
chanical systems (MEMS) sensors and actuators and micropower sources for
autonomous MEMS.

Dr. Basset received a doctoral fellowship from the Centre National de la
Recherche Scientifique for 2000–2003 and, in 2005, a three-year young re-
searcher grant from the French Research Agency (ANR) to work on energy
harvesting using micro- and nanotechnologies.


