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Abstract—In this paper, we present a formal analysis and de-
scription of the steady-state behavior of an electrostatic vibration
energy harvester operating in constant-charge mode and using dif-
ferent types of electromechanical transducers. The method pre-
dicts parameter values required to start oscillations, allows a study
of the dynamics of the transient process, and provides a rigorous
description of the system, necessary for further investigation of the
related nonlinear phenomena and for the optimisation of converted
power. We show how the system can be presented as a nonlinear
oscillator and be analysed by the multiple scales method, a type of
perturbation technique. We analyse two the most common cases of
the transducer geometry and find the amplitude and the phase of
steady-state oscillations as functions of parameters. The analytical
predictions are shown to be in good agreement with the results ob-
tained by behavioral modeling.

Index Terms—Bifurcation analysis, electrostatic vibration en-
ergy harvesters, multiple scale method, steady-state oscillations.

I. INTRODUCTION

E LECTROSTATIC (capacitive) vibration energy har-
vesters (e-VEHs) convert kinetic energy of the envi-

ronment into electrical energy using a capacitive transducer
[1]. E-VEHs are particularly suitable for microscale imple-
mentation and have become in recent years the subject of a
growing area of research [2]–[11]. The main issue of e-VEH
design is the optimization of converted power for given en-
vironmental conditions and given limitations of the electrical
and mechanical components [12]. This optimisation requires a
tool estimating the converted power for a given set of design
parameters and operation conditions [13], [14]. To date, such
a tool is still lacking. The architecture and operation of VEHs
based on electrostatic transducers is intrinsically more complex
than for the case of electromagnetic and piezoelectric VEHs
[4], [15]–[17]. Because of periodic charge/discharge cycles,
the system is time-variant and cannot be adequately analysed
with a simple analytical approach such as linearization around
an operating point. The conditioning circuit brings additional
complexity to the system since its architecture and operating
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mode impact directly the mechanical dynamics of the resonator.
For these reasons, an optimal design of an e-VEH requires a
deep understanding of the overall system dynamics, including
nonlinear effects.
There are practical reasons for developing a theoretical

analysis. It allows the prediction and analysis of irregular and
chaotic behavior for realistic configurations of the conditioning
circuit as highlighted in [18]. As a result, one can bound the area
of internal and external parameters of the system where stable
harmonic vibrations exist. Based on that knowledge, one can
predict the most effective operating parameters of the e-VEH
(such as the amplitude of the mobile mass displacement) at the
design stage, and thereby optimise converted power.
Indeed, most existing conditioning circuits for e-VEHs [2],

[4], [5], [8] operate correctly only in the context of regular quasi-
sinusoidal motion of the resonator, since their operating mode
is based on the detection of the maximum and minimum of
the transducer capacitance. Theoretically, in a non-regular mode
there can be a large number of local maxima and minima during
a particular time interval (e.g., during one period of the external
vibration). In practice, the dynamics of the system over these in-
tervals are defined by non-idealities of the conditioning circuit
(for example, there is always a delay in the detection of extrema
in realistic circuits) and are virtually impossible to predict. Such
irregular behavior is not compatible with an optimal operating
mode of the e-VEH system, and the designer of the e-VEHmust
avoid such regimes. Hence, the theory should allow the analysis
of irregular modes and clearly indicate the limits between reg-
ular and irregular behavior.
The work [14] has suggested a general analytical tool for

analysis of a resonant electrostatic VEH operating in the mode
of strong electro-mechanical coupling. The tool proposed there
introduces the amplitude-dependent mechanical impedance of
the nonlinear system “conditioning circuit—capacitive trans-
ducer” that allows one to use a well-known method of analysis
of electrical networks. This tool is comprehensive for those who
are familiar with electronic design tools, and it provides a good
agreement with behavioral modeling. However, this tool is still
limited for further exploration of non-regular behavior and does
not take into account the eventual zero-frequency shift of the
mobile mass position, which can be significant for transducers
with asymmetric geometry (typically, a gap-closing transducer).
Building on this work, our paper presents a formal approach

based on the application of the multiple scales method (MSM)
to a resonant e-VEH with the most common conditioning cir-
cuit proposed in [4]. In this approach, the system is presented as
a nonlinear oscillator where the electromechanical transducer
generates a nonlinear force. With this conditioning circuit, the
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transducer operates in a constant-charge triangular QV energy
conversion cycle that is considered as being the most efficient
mode of operation [19]. Like the tool in [14], the proposed
method allows one to find parameters of steady-state oscilla-
tions (such as the amplitude and phase) as functions of param-
eters of the conditioning circuit, the resonator and the external
acceleration. In addition, the MSM provides a straightforward
route for bifurcation and stability analysis and for the analysis
of transient process, and it can easily be adjusted for different
types of nonlinearities such as nonlinear air damping, mechan-
ical (spring) nonlinearity and different forms of the transducer
force. In particular, the analysis presented here predicts analyti-
cally the irregular behavior of the eVEH at weak amplitudes dis-
covered previously by simulations in a behavioral model [18].
The validation of the analytical results is carried out by em-

ploying mixed VHDL—AMS/Eldo simulations of the e-VEH
described in detail in [14]. Two VHDL-AMS/Eldo models are
considered. The first one is a simplified model that implements
an ideal operating regime of a capacitive transducer in con-
stant-charge mode. The second model implements the condi-
tioning circuit described in [4] and takes into account certain
effects typical for realistic systems such as losses in diodes and
finite charging times of the variable capacitors. Our analysis
and simulations are carried out for two types of transducer: a
gap-closing transducer whose capacitance is a hyperbolic func-
tion of the displacement and an area overlap transducer whose
capacitance is a linear function of the displacement.
The paper is organised as follows. In Section II we discuss

the architecture of the system and its governing equations.
Section III describes the behavioral VHDL-AMS/Eldo models
of the e-VEH. Section IV presents the MSM-based analysis
of the system while and Section V gives the results of the
application of the MSM methods to transducers with the two
geometries and discusses the comparison between the simula-
tions and analytical results.

II. STATEMENT OF THE PROBLEM

In this section, we introduce the electromechanical model
used to describe our VEH devices. A simple electrostatic har-
vester consists of a resonator, a variable capacitor (a transducer)

and a conditioning circuit (Fig. 1). The resonator frame
moves due to the external vibrations. The displacement of the
mobile mass with respect to the frame is also affected by the
transducer force . Therefore, the equation defining is

(1)

where is the mass of the resonator, is the damping factor,
is the natural frequency, is the spring constant,

is the acceleration amplitude of external vibrations, is
the external frequency and is the initial phase of the external
vibrations.
The transducer force depends on the transducer voltage
and on the mobile mass position :

(2)

where is generated by the conditioning circuit from
Fig. 1 proposed in [4] that implements the constant-charge

Fig. 1. Schematic view of an electrostatic vibration energy harvester imple-
menting the constant-charge triangular QV energy conversion cycle [4].

triangular QV energy conversion cycle. The conditioning
circuit discharges the transducer to zero when the transducer
capacitance is at a local minimum and charges it to a charge

when its capacitance is at a local maximum. The energy
conversion is achieved when the transducer capacitance de-
creases keeping its charge constant . During this process,
mechanical energy is converted into electrical energy, and the
transducer acts as a damper in the mechanical domain. In the
case of transducers with monotonously increasing
characteristics, the voltage generated by the transducer de-
pends on the sign of the mobile mass velocity:
if and if . Hence, the
force is a piecewise defined function: if and

otherwise, and will be referred later
as .
At a local maximum of , the conditioning circuit fixes

three electrical quantities on the transducer: the charge , the
voltage and the energy . Only one of the three can be
fixed independently from the others since they are related by
the following expressions:

(3)

Here is the local maximum value of the . It is im-
portant to understand that is a dynamic quantity which
may change at each local maximum of and which is con-
stant during the time intervals between two consecutive local
maxima. is constant in a steady-state harmonic mode.
At a local minimum the three quantities are set to zero. The

quantity (one from the three) that is independently fixed to a
non-zero value at a local maximum depends on the architecture
of the conditioning circuit. In this paper, we consider the most
common case valid for the circuit in Fig. 1 where the energy

is fixed [4] (see the description of the behavioral model in
Section III).
Whatever quantity is fixed on the transducer at a local max-

imum of , the charge does not change until the next
local minimum of is reached. The electromechanical en-
ergy conversion is carried out during the time interval corre-
sponding to the motion of the mobile plate from to
positions. This energy conversionmode is called in literature the
constant-charge operating mode of the transducer, which under-
lines the fact the transducer keeps a constant electrical charge
during the electrical energy generation.
For an area overlap transducer [20], the capacitance

is and
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. The expression for the transducer force in
this case is

(4)

Here is the local maximum of , defined similarly to
.

In order to reduce the number of parameters and outline only
essential ones, the following normalised variables are intro-
duced: time , dissipation , normalised
external vibration frequency

and . Equa-
tion (1) is now written as

(5)

where the prime denotes the derivative with respect to dimen-
sionless time and the function is the normalised ver-
sion of (4):

(6)

The same (5) may be used to describe the system with other
types of transducers. For the transducer with hyperbolic capac-
itance function [14], [18] , the trans-
ducer force is

(7)

Here is the transducer gap at rest ( and )
and is the maximum value of displacement . Introducing
the variables and parameters and

, one obtains the force in the form

(8)

In this study, we consider the geometry of the transducers and
resonator as fixed (the mass, the natural frequency and the trans-
ducer dimensions are constant), whereas the external accelera-
tion amplitude and the energy are the design parame-
ters which may vary and affect the behavior of the system. By
consequence, for the normalised equation, there are two control
parameters of the dynamical system: and for area overlap
transducer and and for gap-closing transducer.
Numerical examples will be presented with typical parame-

ters of systems (4) and (7), as given in Table I. The values are
taken from [14] and [16].

III. BEHAVIORAL MODELING OF THE E-VEH

The modeling of the e-VEH has been carried out employing
a mixed SPICE and behavioral description implemented in
the VHDL-AMS/Eldo environment provided with the Ad-
vanceMS tool of Mentor Graphics. The conditioning circuit
is implemented as an electrical network described by an Eldo
netlist (Eldo is a commercial variant of the SPICE simulator).
The transducer and resonator are described by a VHDL-AMS

TABLE I
PARAMETERS OF THE SYSTEMS

model. We consider two models that have different implemen-
tations of the condition circuit from Fig. 1. The first model
employs an ideal simple circuit and the second model employs
a circuit that includes certain ‘nonidealities’ that can be found
in realistic circuits.

A. VHDL-AMS Model of the Transducer/Resonator

The VHDL-AMS language is a powerful tool that allows one
to describe physical systems defined by lumped-parameter dif-
ferential equations. This language is particularly suitable for the
description of behavior of systems interfaced with electrical net-
works [21]. A VHDL-AMS model of the transducer/resonator
block can be seen as an electrical dipole behaving as a variable
capacitor. The capacitance variation is obtained through reso-
lution of Newtonian equations written for the resonator which
also takes into account the force generated by the transducer.
Presented in [18], the VHDL-AMSmodel of the transducer/res-
onator block is a system of physical differential equations:

(9)

Here is the known acceleration of the external vibra-
tions, and are the charge, current and voltage through the
terminals of the variable transducer capacitor. The model solves
these five equations for five unknown quantities:
and or . One of the two latter quantities or a relation between
them is defined by the electrical network connected to the mod-
eled dipole.

B. Mixed VHDL-AMS/Eldo Model of the Conditioning Circuit

In order to formally validate the theory presented in the paper,
we used the conditioning circuit model shown in Fig. 2. Its goal
is to create an electrical context for the transducer that exactly
corresponds to the constant-charge energy conversion regime
described by the equations given in Section II [4]. The switches
SW1 and SW2 are driven by short pulses corresponding to the
moments of local maxima and minima of . These pulses
are long enough to charge the transducer at a local maximum
of to and to discharge it through a small load resis-
tance when reaches a local minimum. The voltage is
defined as a function of the value of the local maximum of
through the formula , where is a constant
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Fig. 2. Simplified idealised conditioning circuit.

Fig. 3. Model of the realistic conditioning circuit.

parameter of the model. This model emulates the ideal electrical
environment for a transducer operating in constant-charge mode
and requires few resources for simulations. It is not realistic and
is only used for the intermediate theory validation.
A more realistic model of the conditioning circuit is given in

Fig. 3. It is directly based on the circuit presented in [4]. Initially,
the large reservoir capacitor is charged up to some voltage

that is assumed to be constant since is large. Themodel
is provided with blocks described in VHDL-AMS allowing the
detection of a local maximum and minimum of and of a
local maximum of the inductor current .
When a local maximum of is detected, the switch SW1

is closed for a fixed time , thus loading the inductor to a current

(10)

The corresponding energy of the inductor is

(11)

After the time , SW1 is open and the inductor current
flows through the diode and charges (forward charge
transfer). Note that whatever the value of is at that mo-
ment, the inductor gives it the energy that is a free design
parameter of this architecture and is uniquely related with

and .
Both processes (the inductor and capacitor charging) are very

fast and they take place during a time that is negligible with
respect to the variation period of . This is ensured by the
appropriate choice of the value of the inductance .
After that, both switches are closed, and the electrostatic

transducer operates in constant-charge mode. When

TABLE II
PARAMETERS OF VHDL-AMS/ELDO MODELS

reaches a local minimum, the switch SW2 is opened, allowing
the transducer to discharge through the inductor. When the
voltage on is zero (the current in the inductor is maximal),
the transducer is disconnected from the inductor by the switch
SW2. The energy accumulated in the inductor is transferred to

through the diode .
Table II presents the numerical parameters of the circuit

operation and the timing of the switch operation. The max-
imum/minimum detectors regularly sample the input quantity
and search for a local maximum/minimum by analysing the last
three sampled points (in practice, the maximum detection is
done by analog signal processing [4]). Note that the character-
istic time of the electromechanical energy conversion defined
by the rate of the mobile mass motion is much larger than the
time required for the energy transfer between and .
Hence, the detector detecting an maximum operates at much
higher frequency than the max/min detector.
The advantage of this model for our study is that its archi-

tecture is very close to the realistic circuit and it accounts for
realistic parasitic effects such as losses in the flyback diodes.
However, the presented model has two minor drawbacks for the
theory validation. Firstly, it does not correspond exactly to the
mathematical model described in Section II since it includes the
diodes and considers a small finite time for the charging/dis-
charging processes, and its dynamics may be slightly different
from those described by the mathematical model. Secondly, the
simulation time is long. These are the reasons why the idealised
circuit of Fig. 2 is introduced as an intermediate validation step.

IV. MULTIPLE SCALES METHOD

The method of multiple scales (MSM) is an asymptotic
method that is often applied for the analysis of weakly non-
linear oscillators [22], both autonomous and under external
excitation. The idea behind this method is to present oscillations
in a quasi-harmonic form and to find adjustments to oscillation
characteristics, such as amplitude and phase, that result from the
nonlinearity. The methods is known to be an effective tool for a
range of system, from the classical Duffing’s oscillator [22] to
voltage controlled oscillators [23] and recently was employed
to study nonlinear vibrations of piezoelectric harvesters [24]. In
this section, the application of the MSM to the e-VEH system
is presented. More details about the standard implementation
of the method can be found in [22].
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A. Standard Implementation of the Method

In (5), the dimensionless parameters and are rela-
tively small with respect to unity. Since we consider a resonant
harvester, we also introduce a small representing the external
vibration frequency mismatch with the natural resonance fre-
quency of the resonator: . To emphasise the terms
with small parameters, we introduce a small quantity and re-
place them by the following products: , and

. We also note the functions are the product of the
coefficients and and dimensionless ratios containing or

, so we can also present and . In order
to put them into the correct order of the small parameter in the
method, we will note . Thus,

(12)

The multiple scales method is a perturbation method that in-
troduces the time scales . In this case, the system dy-
namics defined by the process is now dependent on dif-
ferent time scales. The time derivatives are now given by

(13)

where . For displacement , a stan-
dard expansion for perturbation method is used:

(14)

Equation (12) now can be rewritten as follows:

(15)

Collecting orders 0 and 1 of the parameter , and neglecting
order 2 and higher, we obtain two equations

(16a)

(16b)

In (15) the terms with in the arguments of give second-order
terms in the expansion of over the powers of , hence we
neglect them in (16b). The solution of (16a) is

(17)

where the slow complex amplitude is
expressed through the real slow amplitude , and c.c. stands
for the complex conjugate. In expression (16b), the function

is a periodic function of with period (as
well as ) and, therefore, we can use the Fourier series for the
force . Recalling that the system is high-Q resonant, we limit
the series to the first harmonic

(18)

where and are the following coefficients of the Fourier
series:

(19)

Equivalently, in the complex representation

(20)

where complex is expressed through real and

(21)

After the solution for is substituted into (16b), we collect the
terms that contain since they lead to linear resonance
of the undamped system. Equation (16b) yields one equation to
find and one equation for complex :

(22a)

(22b)

From expression (22a), it follows that and, as a con-
sequence, represents the average (zero frequency) shift of
the mobile mass displacement due to the transducer force. Let
us denote for convenience:

(23)

Therefore, the total solution will take the form

(24)

Dividing (22b) into real and imaginary parts, one obtains
equations for the slow amplitude and the phase

(25)

It is relevant to note that this system of differential equations
provides information about transient dynamics of the system,
and allows one to explore the dynamics around multiple stable
points and identify different possible stable modes.
Let us find the steady-state solution and from the con-

dition and . For the phase one obtains a set of
equations

(26)
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The equation for the amplitude can now be found from (26)

(27)

Expressions (24), (26) and (27) define the steady-state response
of the nonlinear oscillator (5) to the external driving and the
nonlinear force . Note that by multiplying both sides of (27)
by we can rewrite this equation with the original values of
and in the same form.
The steady-state solution therefore is

(28)

where we have used the index ‘0’ to emphasize that and
are steady-state characteristics.

B. Stability of Steady-State Solutions

Formally, is a fixed point of the set (25). To
analyse its stability, we introduce small perturbations
and to and and substitute and

into (25). The linearised system describing
the evolution of has the following form:

(29)

where the matrix is in fact the Jacobian obtained from (25)
and taken at .
Thus, stability of the fixed point is defined by

the eigenvalues of the matrix in (29). According to the Routh-
Hurwitz criterion, the point is stable if the following
conditions are fulfilled:

(30)

If the above conditions are not fulfilled, the orbit that is defined
by these and is unstable (a saddle orbit). The above sta-
bility condition is necessary, but not sufficient.We note here that
for nonlinear oscillators, it is very typical that the increase of
the external force amplitude or other parameters leads to bifur-
cations of previously stable orbits and eventually, to irregular,
chaotic behavior. Though these dynamics are beyond the scope
of this paper, the results obtained by the MSM can be used in a
further analysis. We report the results of this research in [25].

C. Improving Accuracy for the Estimation of the Zeroth
Harmonic

The described above algorithmworks very well if the average
shift is relatively small compared to the amplitude
of oscillations (see the discussion on the comparison between

the model simulations and the theory in the next section). How-
ever, for the gap-closing transducer whose force is expressed by
(8) the constant shift of oscillations can be large and even larger
than [18]. This leads to a non-negligible error in provided

by the standard implementation of the MSM that we described
in Section IV.A. This error appears from the underestimation of
the force that can be relatively large and that produces the
average shift of .
In order to accurately incorporate this effect into the model,

we can use the solution (24) when presenting as a Fourier
expansion. Since the transducer forces (8) depend on the max-
imum displacement that we define as , the
Fourier coefficients will be the functions of both, and :

and . Practically, it means that
the Fourier expansion is carried out for in (16b).
Equations (26) and (27) are rewritten as

(31)

(32)

These equations have three unknown variables: and
. One more equation is required to obtain a self-consistent

system and it is obtained from (23) for the average shift ,
where we assume that depends on and on itself

(33)

Solving the four expressions given by (31), (32) and (33), we
find and and to be used in solution (28).
Finally, we briefly note how we derived a criterion similar

to (30) to obtain the necessary condition for stability. There are
three actual variables in the system: the amplitude , the phase
and the shift . The evolution of and is given by (25) with
the difference that now and are functions of and . The
third equation that determines the evolution of is obtained
by differentiating expression (33). Therefore, the dynamics of
the variable are given by the equations

(34)

Now is a fixed point of (34). Similarly to
Section IV.B, the small perturbations from
are introduced into (34). The dynamics of the perturbations

are defined by the equation

(35)

where the Jacobian is obtained from (34) and taken at
. In this case we obtain a cubic polynomial

to find the eigenvalues of and we state the same necessary
condition: in order for a solution to be stable, all real parts of
the eigevalues must be negative.
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Fig. 4. Area overlap transducer: the envelope (maximum andminimum values)
of oscillations as a function of the energy at m/s (line 1),

m/s (line 2) and m/s (line 3). Marks ‘a’ and ‘b’ denote
the maximum and minimum values of the displacement respectively. The zero
displacement or the rest position is shown by the dashed line. Squares show the
envelope obtained from VHDL-AMS simulations of the idealised model from
Fig. 2 while circles show the simulations of the realistic model from Fig. 3.

V. STEADY-STATE OSCILLATIONS: PARTICULAR EXAMPLES
OF THE TRANSDUCER

A. Steady-State Oscillations

Let us investigate the two particular cases of the transducer.
For the area overlap transducer with defined as (6), the coef-
ficients of the Fourier series are

(36)

and they are substituted into (26) and (27). The envelope of os-
cillations (i.e., the maximum and the min-
imum values of the oscillation) as a function
of the energy is shown in Fig. 4 at three different values of
the external acceleration . Note a slight asymmetry of the
envelope: there is a non-zero average shift of oscillations that
becomes more pronounced at nJ.
At large accelerations and small energies when the

oscillations of the resonator are large the system is multistable:
there are three coexisting solutions of (27) with one of them un-
stable according to the criterion (30). Such an unstable solution
can never be observed in numerical simulations of the original
system (5) or in a realistic device. Alternatively, we can fix
and vary , to see a bifurcation diagram of the parameter

in detail (Fig. 5). The two solutions, marked by 1 and 3 in
Fig. 5, are stable orbits that one can observe in numerical simu-
lations by setting different initial conditions as is shown, while
curve 2 shows the unstable branch.

Fig. 5. Area overlap transducer: bifurcation diagram versus (at the fixed
energy pJ) showing two branches that correspond to stable orbits
(solid lines) and a branch that correspond to an unstable orbit (dashed line).
Over a range of the bifurcation parameter , the two stable orbits coexist.
Particular examples of oscillations that correspond to the two stable branches at

m/s marked (a) and (b) are shown in Fig. 7.

In the case of the gap-closing transducer, the coefficients of
the first Fourier harmonics are

(37)

and they are substituted into (31), (32) and (33) in order to ob-
tain a more accurate solution. The envelope of oscillations as
a function of the energy for the gap-closing transducer is
shown in Fig. 6 at different values of the external acceleration

. In this case the asymmetry of the envelope is stronger:
there are such energies that both, maximum and
minimum , are above the rest (zero) position.
Note that in this case, there also exist multiple solutions for

and at certain and , i.e., formally this system is also
multistable. However, the other roots of (27) are greater than
unity and, as follows from the expressions (8), they lie in the
“unphysical” region for this system. The only physical solution
is stable according to the criterion described in IV.C.

B. Comparison With VHDL-AMS/Eldo Modelling

Numerical simulation was carried out with the VHDL-AMS/
Eldo models described in Section III. Firstly, we compare the
simulations with the analytically calculated envelope of oscilla-
tions in Figs. 4 and 6 for the two transducers. The results of the
VHDL-AMS/Eldo simulations shown by squares for the ide-
alised model (from Fig. 2) and by circles for the realistic model
(from Fig. 3). While the idealised model agrees very well with
the theory for the both transducers, there is a slight discrep-
ancy with the realistic model. We recall that the realistic model
includes certain parasitic effects such as losses on the diodes.
Therefore, the realistic circuit does not extract mechanical en-
ergy from the resonator as effectively as the idealised circuit.
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Fig. 6. Gap-closing transducer: the envelope (maximum and minimum values)
of oscillations as a function of at m/s (line 1), m/s
(line 2) and m/s (line 3). Marks ‘a’ and ‘b’ denote the maximum and
minimum values of the displacement respectively. The zero displacement or the
rest position is shown by the dashed line. Squares show the envelope obtained
from VHDL-AMS simulations of the idealised model from Fig. 2 while circles
show the simulations of the realistic model from Fig. 3.

This causes the amplitude of vibrations in the resonator to be
slightly larger than it could be in the ideal system.
Fig. 7 presents the simulation results for the normalised dis-

placement obtained with different initial conditions
and . Numerical simulations agree with the predictions of
the MSM: the amplitude of the waveform 7(a) corresponds to
the point (a) on the lower branch of the bifurcation diagram 5
while the amplitude in Fig. 7(b) corresponds to the upper branch
of that diagram and is marked as (b).We note that in this case the
observed dynamics are somewhat similar to those of the Duffing
oscillator under a harmonic excitation.

C. Necessary Conditions to Start Oscillations

From Figs. 4 and 6, it is clearly seen that there exist values
of the circuit control parameters and the acceleration
for which there are no positive values of steady-state amplitude
(see, for example, how the lines marked by 1 cross the hori-

zontal axis in Figs. 4 and 6). Since denotes the amplitude of
oscillations, it has a physical meaning if it is positive. We can
summarise this as follows. At a given there exists such
that the system oscillates if . And vice versa, at a
given there exist such that the system oscillates if

. The existence of a minimal was discovered
in a behavioral model in [18]. If this condition on and
is not fulfilled, the operating mode of the e-VEH is irregular and
uncontrollable in a realistic context.
Firstly we give a detailed example for the area overlap trans-

ducer (6) since the expression for and can be ob-
tained for it in a very simple form. Let us assume that
in (27). This condition will provide us with a necessary condi-
tion to start oscillations. For the dimensionless parameters one
obtains a simple expression

(38)

Fig. 7. Area overlap transducer: coexisting oscillations at pJ and
m/s . Two waveforms correspond to the lower and upper branches

at the points marked as (a) and (b) in Fig. 5.

Substituting (36) into (38), one finds the relations between the
normalised acceleration (or ) and given normalised
circuit parameters (or ):

(39)

The inverse expressions that relate the boundary values of the
circuit control parameter with some given external accel-
eration are easily obtained from the above. Let us give a
numerical example: what maximal value of should be fixed
on the transducer to obtain oscillations at m/s ? From
(39) it follows that nJ. This corresponds exactly
to the point in Fig. 4 where the envelope disappears (this
corresponds to the lines 1a and 1b). Therefore, no oscillations
are possible if .
For the gap-closing transducer one solves the set of (32) and

(33):

(40)

and finds the required starting parameter together with the re-
sulting average shift. For example, at m/s

nJ, which corresponds to the point in Fig. 6 where the en-
velope disappears (this corresponds to the lines 1a and 1b).
Now let us illustrate the presence of the boundary parame-

ters required for oscillations in simulations of the behavioral
VHDL-AMS model. Fig. 8(a) shows a slowly growing ramp of
acceleration (in ms ) as a function of the normalised time . At
this , the displacement is obtained as a function of time,
Fig. 8(b). Below the boundary value of , the dynamics of
the system are irregular with many local maxima detected in one
period of oscillations (Fig. 8(c)). Only above this threshold, one



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BLOKHINA et al.: STEADY-STATE OSCILLATIONS IN RESONANT ELECTROSTATIC VIBRATION ENERGY HARVESTERS 9

Fig. 8. Area overlap transducer: (a) slowly growing ramp of (the enve-
lope of the external oscillations) and (b) corresponding displacement of the har-
vester as functions of normalised time. Twomagnified waveforms show the case
when no regular oscillations are observed (c) and when harmonic oscillations
have started (d).

can observe harmonic oscillations with one maximum detected
during one period of oscillations (Fig. 8(d)).

VI. DISCUSSION AND CONCLUSIONS

In this section we give a discussion of our theoretical ap-
proach, highlight the difference with the analytical tool from
[14] and point out the immediate practical value of the results
for design of e-VEHs.
The MSM is known as a powerful and flexible method for

analysis of nonlinear systems. The two main practical benefits
that we obtained from the theory are
— It allowed us to obtain equations that fully describe the os-
cillations in the system. Now, for any set of parameters,
one can calculate the resulting oscillation and therefore
converted power. It also gives the initial analysis of sta-
bility. The results obtained with this method have been
used for further stability analysis in [25], [26]. Therefore,
for the gap-closing transducer, based on the results pre-
sented in this paper, we define all possible dynamics of the
system and find values of the system parameters where the
system displays regular harmonic oscillations. Practically,
this is very important since the conditioning circuit can op-
erate correctly and effectively only if this is the case.

— Another conclusion that immediately follows from the
method is the existence of ‘boundary’ values for the
acceleration amplitude and the energy required
to start oscillations in the resonator. The method yields
a simple way to calculate these boundary values. This
is also an important result from a practical standpoint:
knowing parameters of the environment, one can optimize
the design parameter . For the area overlap transducer,
the expressions that give the boundary values for
and are very simple.

In addition, the method allows one to expand it to the case
of different nonlinearities. This will allow the exploration of
nonlinear effects that seem to be very promising for widening
the frequency response of the system [27]–[29].
The limitations of the method follow from limitations that are

inherit in perturbation techniques. Firstly, there is a very general
condition for all perturbation methods that nonlinearities should
be relatively small (this ‘smallness’ can be easily established
in the normalised dimensionless equation by comparing the pa-
rameters of the nonlinear terms with unity). In our case, this is
equivalent to stating that that the method will work while oscil-
lations can be described as quasi-harmonic. As is shown by the
simulations based on the VHDL-AMS model, this is typically
the case for the system over a wide range of parameters. Sec-
ondly, despite the flexibility of the MSM, it demands that non-
linear terms should be arranged accurately with respect to the
order of the small parameter . We note that for the gap-closing
transducer we have overcome this difficulty by introducing a
modification of the standard MSM implementation where we
compensate an error that appeared due to the large constant shift

.
We also point out that all analytical results are verified by sim-

ulations of a realistic behavioral model carried out with VHDL-
AMS/Eldo simulators.
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