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Abstract

We describe a clustering algorithm based on continu-
ous Hidden Markov Models (HMM) to automatically clas-
sify both electrocardiogram (ECG) and intracranial pres-
sure (ICP) beats based on their morphology. The algorithm
detects, classifies and labels each beat based on morphol-
ogy. In order to avoid the numerical problems with classi-
cal Expectation-Maximization (EM) algorithm we apply a
novel method of simulated annealing (SIM) for HMM op-
timization. We show that better results are achieved using
simulated annealing approach.

1. Introduction

Computer-aided medical applications is a field of enor-
mous development in recent years. One of these appli-
cations consists of extracting significant information from
raw data like in case of Holter ECG signals and intracranial
pressure signals.

Holter signals are ambulatory long-term ECG registers
used to detect heart diseases which are difficult to find in
normal electrocardiograms. These signals normally include
a quantity of beats greater than 100000, and doctors must
visually examine all of them in order to find possible ab-
normal beats. Examining every beat present in the Holter
register is time consuming, and is quite likely some beats
could be omitted in the visual inspection because of subjec-
tive reasons. Nevertheless, these signals include many sim-
ilar beats, and only a few are different, namely, most of the
time doctors are examining the same kind of beat. There-
fore, it would be very useful to have a method to simplify
the Holter register prior to its visual inspection.

Traumatic brain injury (TBI) remains a significant cause

of mortality and morbidity in both children and adults. TBI
often leads to increased intracranial pressure (ICP) that may
result in worsening brain injury and outcome. Several re-
searchers, however, have performed preliminary studies on
the ICP beat morphology and suggest that the ICP beat may
contain indirect information about the intracranial compli-
ance [5].

We introduce an automatic clustering algorithm based
on continuous HMM which can be used to perform mor-
phological analysis. In the past, cluster analysis techniques
have focused on data described by static features. In many
real applications, the dynamic characteristics, i.e., how a
system interacts with the environment and evolves over
time, are of interest. Such behavior or characteristic of these
systems is best described by temporal features whose values
change significantly during the observation period, like in
case of electrocardiogram or intracranial pressure signals.
An HMM is a very suitable tool for coping with temporal
information [8].

This stochastic based modelling approach has found its
use in many application areas including speech processing,
molecular biology and robotics. Due to the numerical and
initialisation problems we cast the problem of HMM opti-
mization under the framework of simulated annealing [4].

2. Method

2.1 Hidden Markov Models

An HMM is a stochastic finite state automata defined by
the following parametersλ = (A, p,B), whereA is a state
transition probability,p is the initial state probability and
B is the emission probability density function of each state
is defined by a finite multivariate Gaussian mixture. Each
model can be used to compute the probability of observing



a discrete input sequenceO = O1, . . . , OT , P (O|λ) to find
the corresponding state sequence that maximizes the prob-
ability of the input sequence,P (Q|O, λ), and to induce the
model that maximizes the probability of a given sequence
P (O|λ′) > P (O|λ). The following keywords are known
as the three problems of an HMM: evaluation, generation,
and training.

Expectation-Maximization [6] algorithm is a standard
solution for solving the training problem. However, due
to the fact that classical EM algorithm is very sensitive to
initialisation and also leads to meaningless parameters esti-
mation when the EM converged to the boundary of the pa-
rameter space (where the likelihood is unbounded), we used
simulated annealing approach for global HMM training. A
detailed description of the procedure might be found in [8].

Simulated annealing is a well known general heuristic
approach to combinatorial optimisation. Given the observa-
tion sequence O, a state sequenceQ is generated at random
and the logarithm of probabilityP (O|λ) of generating O is
considered to be the objective valuef(Q) to be minimized.
The solution structure is based on the choice of a state tra-
jectory.

The various building blocks were proposed as follows
[4]: (i) The initial solution is obtained simply by generating
a random state trajectory.(ii) The initial temperature should
be high (close to 1) to allow virtually all transitions to be
accepted. Thereafter, the temperature is decreased at each
iteration by a factor0.98. (iii) The number of trials at each
temperature should progressively increase with the decrease
in temperature (in our case by a factor1.02). (iv) Defining
the neighbourhood structure. Moving from one solution to
the next is obtained by choosing at random a state at a ran-
domly chosen instant and affecting it randomly to another
state as it is shown in Figure 1.(v) Updating the objective
value. The objective function to be minimised is the over-
all probability of the observation sequence. Since only one
state is changed at one period, cost updating is performed
by calculating the probability differential. The cost evalua-
tions of the algorithm are made independent of the problem
size in order to minimize the computation time.

2.2 Clustering approach

Let’s consider a data setD consisting ofL sequences,
O = {O1, . . . ,OL}. Oi = {Oi

1, . . . , O
i
T } is a sequence of

lengthT composed of multivariate feature vectorsOt
i . The

objective is to group all sequences intoK clusters using
the setΛ of K HMMs Λ = {λ1, λ2, . . . , λK}. This prob-
lem is normally handled by methods such as k-means and
Gaussian mixture model. The assumption underlying our
method of clustering is that all of the sequences that belong
to a cluster were generated by the same HMM and, such
as, have high probabilities under this HMM. Each cluster is

Figure 1. Defining the neighbourhood struc-
ture in simulated annealing is equaled to
changing the state at period t from state s
to state l.

therefore presented by one HMM model.
A natural probabilistic model for this problem is that of

finite mixture model

PK(O) =
K∑

j=1

Pj(O|λj)ωj (1)

whereO denotes a sequence,wj is the weight of thejth
model; in other words it is the prior probability of compo-
nent modelλj . Pj(O|λj) is the density function for the
sequenceO given a component modelPj with parameters
λj .

To be able to perform clustering, we need some measure
of sequence assignment to the clusters. The most natural
way is to use the following probability (log-likelihood) that
the sequenceOi is generated by the HMMλj

Pij(Oi|λj) = log
N∑

l=1

αT (l) (2)

which rises automatically during HMM learning. Hereα
is the forward component of the Forward-Backward pro-
cedure (see [8]). We will further refer to this measure as
sequence-to-likelihood measure.

Hierarchical approach, inspired by [9], is depicted by the
following algorithm:

1. We train anN -states HMM for each sequenceOj ,
(1 ≤ j ≤ L) of the training setO. TheseL HMM
are identified byλi and have been initialized with the
k-means technique in case of EM optimization.

2. For each modelλi, we evaluate its probability to gener-
ate the sequenceOj , 1 ≤ j ≤ L, obtaining a measure
matrixW
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Wij = P (Oj |λi), 1 ≤ i, j ≤ L (3)

3. We apply a complete link agglomerative hierarchical
clustering to the matrixW obtainingK clusters on the
data setO. The algorithm produces a sequence of clus-
tering of decreasing number of clusters at each step.
The clustering produced at each step results from the
previous one by merging two clusters into one.

4. Having pooled the sequences intoK groups we fit
each HMM to each cluster using all the observation
sequences in cluster for HMM training. The weights
of mixture model (1) are computed after redistribution
as follows

ωj =
Nj

N
(4)

whereNj is the number of sequences that belong to
clusterj.

First, we need to symmetrize the matrixW because the
result of step 2 is not a distance matrix. Thus, we define

W ij
S =

1
2
(Wij + Wji) (5)

Another kind of HMM based measure that we applied,
which reminds of the Kullback-Leibler measure [7], defines
the distanceWKL between two HMMλi andλj , and its
symmetrized versionWKLS , as

W ij
KL = Wii

(
ln

Wii

Wji

)
+

(
ln

Wij

Wjj

)

W ij
KLS =

1
2
(W ij

KL + W ji
KL) (6)

Finally, we introduced another measure, called BP met-
ric [7], defined as

W ij
BP =

1
2

(Wii − Wij

Wii
+

Wjj − Wji

Wjj

)
(7)

and motivated by the following considerations: the measure
(3) defines a similarity measure between two sequencesOi

andOj as the likelihood of the sequenceOi with respect to
the modelλj , trained onOi without really taking into ac-
count the sequenceOj . In other words, this kind of measure
assumes that all sequences are modelled with the same qual-
ity without considering how well sequenceOj is modelled
by the HMMλj .

2.3 Trace segmentation

To further alleviate computational burden we have per-
formed trace segmentation as a feature extraction method.
Trace segmentation is originally a method used to reduce
the length of a discrete signal, without a great loss of in-
formation. Here, a modified approach called non-uniform
sampling method, which was proposed by [2], is applied.
This procedure is based on detecting changes in the signal
from the amplitude of its derivative. Hence instead of using
directly amplitude information we obtain after the segmen-
tation the observation sequence, which consists of two fea-
tures. The first feature is the duration of the line segment,
ti, and the second feature is the amplitude of the start point
of the line segment,hi. Therefore the observation sequence
may be described as follows

Oi =
[ ti
hi

]
∈ �2, 1 ≤ i ≤ T (8)

3 Results and Discussion

Since the classical Baum-Welch approach is a local op-
timization method, we usedk-means initialization to in-
crease chance of starting training procedure near to global
optima. Regarding the experimental set-up, the maximum
number of training iterations wasCY CHMM = 100, in
case of k-means the maximum number of iterations was
alsoCY CGMM = 100. The convergence threshold was
ε = 1e − 3. To increase statistical significance, the experi-
ments were repeated 10 times.

3.1 Holter ECG results

The MIT/BIH arrhythmia database was used as a gold
standard [3]. The signals were denoised using wavelet
based filter and the baseline signal removal has been elim-
inated. Then the characteristic points of ECG signals as
QRS complex, P and T wave were detected and each beat
was consequently isolated.

There are no apparently significant deviations in perfor-
mance between different measures S, BP, KL in case of the
hierarchical method as Table 1 suggests. The best results
in average are achieved usingWS measure (5). In general,
the average number of classes in one ECG Holter register
varies between two to five, so the HMM clustering perfor-
mance of 99.5% in case of five classes,WS measure and
simulated annealing is reasonable.

3.2 ICP results

We used an automatic pressure detection algorithm to de-
tect the ICP beat components. A detailed description of the
algorithm can be found in [1].
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Table 1. ECG Data clustering results for three,
five and seven classes. The means and vari-
ances (in parenthesis) of clustering perfor-
mance are displayed. The number of HMM
hidden states used was 10.

S KL BP

K=3, EM 100.0(0.0) 100.0(0.0) 100.0(0.0)
K=3,SIM 100.0(0.0) 100.0(0.0) 100.0(0.0)
K=5, EM 94.5(8.4) 92.9(9.1) 93.6(9.1)
K=5,SIM 99.5(0.9) 92.9(10.8) 95.2(9.1)
K=7, EM 76.3(5.6) 78.8(4.8) 77.9(5.0)
K=7,SIM 75.7(3.0) 74.2(3.2) 73.7(3.3)

Table 2. ICP Data clustering results.The num-
ber of HMM states used were 8.

S KL BP

EM 73.5(3.5) 74.5(7.1) 76.3(8.8)
SIM 75.0(9.1) 77.5(9.8) 78.6(7.5)

SIM technique outperforms the EM approach as it can
be seen in Table 2. For the case of measureWKL we show
the symmetrized likelihood distance matrix as a color/gray-
scale image in Figure 2. The axes have been ordered so
that the sequences from the same clusters are adjacent. The
difference in distances between the two clusters is apparent.

4 Conclusion

We applied a clustering algorithm based on HMM on
both real Holter and intracranial pressure data. We im-
plemented simulated annealing approach for HMM train-
ing. This global optimisation technique avoids well-known
numerical (in several cases the EM algorithm had to be
restarted) and initialisation problems of classical EM local
optimisation algorithm. SIM approach is a computational
intensive method. A final comparison of agglomerative hi-
erarchical algorithm with different dissimilarity measures
underlines that there are no remarkable differences among
the proposed measures.
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